模型选择,欠拟合以及过拟合

模型选择,欠拟合以及过拟合

训练误差(training error)是指,模型在训练数据集上计算得到的误差。
泛化误差(generalization error)是指,模型应用在同样从原始样本的分布中抽取的无限多数据样本时,模型误差的期望。

欠拟合:泛化能力差,训练样本集准确率低,测试样本集准确率低。
过拟合:泛化能力差,训练样本集准确率高,测试样本集准确率低。
合适的拟合程度:泛化能力强,训练样本集准确率高,测试样本集准确率高

欠拟合原因:
训练样本数量少
模型复杂度过低
参数还未收敛就停止循环

欠拟合的解决办法:

  1. 增加样本数量
  2. 增加模型参数,提高模型复杂度
  3. 增加循环次数
  4. 查看是否是学习率过高导致模型无法收敛

过拟合原因:
数据噪声太大
特征太多
模型太复杂

过拟合的解决办法:

  1. 增加训练数据:更多的训练数据可以帮助模型更好地学习数据的分布,减少过拟合的风险。
  2. 数据增强:通过对训练数据进行一些随机变换(如旋转、缩放、平移等),生成更多的训练样本,从而扩大训练数据集,减少过拟合
  3. 简化模型:减少模型的复杂度,可以通过减少模型的层数、参数量或使用正则化等方法来实现。这样可以使模型更加健壮,减少过拟合的风险。
  4. 早停法(Early Stopping):在训练过程中监控模型在验证集上的性能,当性能不再提升时停止训练,避免过拟合。
  5. 正则化(Regularization):通过在损失函数中引入正则化项,限制模型参数的大小,从而减少模型的复杂度,防止过拟合。
  6. Dropout:在训练过程中随机删除一部分神经元,使得模型不能够过度依赖某些特征,从而减少过拟合的风险。

几个倾向于影响模型泛化的因素:

  1. 可调整参数的数量。当可调整参数的数量(有时称为自由度)很大时,模型往往更容易过拟合。
  2. 参数采用的值。当权重的取值范围较大时,模型可能更容易过拟合。
  3. 训练样本的数量。即使模型很简单,也很容易过拟合只包含一两个样本的数据集。而过拟合一个有数百万个样本的数据集则需要一个极其灵活的模型。

函数名:power

功 能:指数函数(x的y次方)

用 法:double power(double x, double y)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜鸡不叫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值