脉冲神经网络(Spiking Neural Network,SNN)概述

主要讨论脉冲神经网络的拓扑结构、信息的脉冲序列编码方法、脉冲神经网络的学习算法和进化方法等。

一. 脉冲神经网络的拓扑结构

同传统的人工神经网络一样,脉冲神经网络同样分为三种拓扑结构。它们分别是前馈型脉冲神经网络(feed-forward spiking neural network)、递归型脉冲神经网络(recurrent spiking neural network)和混合型脉冲神经网络(hybird spiking neural network)。

1. 前馈型脉冲神经网络

在多层前馈脉冲神经网络结构中,网络中的神经元是分层排列的,输入层各神经元的脉冲序列表示对具体问题输入数据的编码,并将其输入脉冲神经网络的下一层。最后一层为输出层,该层各神经元输出的脉冲序列构成网络的输出。输入层和输出层之间可以有一个或者多个隐藏层。

此外,在传统的前馈人工神经网络中,两个神经元之间仅有一个突触连接,而脉冲神经网络可采用多突触连接的网络结构,两个神经元之间可以有多个突触连接,每个突触具有不同的延时和可修改的连接权值。多突触的不同延时使得突触前神经元输入的脉冲能够在更长的时间范围对突触后神经元的脉冲发放产生影响。突触前神经元传递的多个脉冲再根据突触权值的大小产生不同的突触后电位。
在这里插入图片描述

2. 递归型脉冲神经网络

递归型神经网络不同于多层前馈神经网络和单层神经网络,网络结构中具有反馈回路,即网络中神经元的输出是以前时间步长上神经元输出的递归函数。递归神经网络可以模拟时间序列,用来完成控制、预测等任务,其反馈机制一方面使得它们能够表现更为复杂的时变系统;另一方面也使得有效学习算法的设计及其收敛性分析更为困难。传统递归人工神经网络的两种经典学习算法分别为实时递归学习(real-time recurrent learning)算法和随时间演化的反向传

### 脉冲神经网络简介及其在人工智能中的应用 #### 定义与特点 脉冲神经网络 (Spiking Neural Network, SNN) 是一种模仿生物神经系统工作原理的人工神经网络模型。SNN 中的神经元通过离散的时间事件——即脉冲或尖峰来传递信息,这使得其更接近于大脑的实际运作机制[^1]。 #### 工作原理 在一个典型的 SNN 架构里,当输入信号达到一定阈值时,神经元会产生一个脉冲并将其发送给其他相连的神经元。这种基于时间的信息处理方式允许 SNN 更高效地模拟复杂的动态过程,并且能够更好地适应实时数据流的任务需求[^2]。 #### 应用于模式识别 对于模式识别任务而言,渐进式串联学习方法被证明可以有效提升 SNN 的性能表现。该技术利用多个阶段逐步训练网络的不同部分,在保持较低功耗的同时实现了较高的分类精度。 ```python import snntorch as snn from torch import nn class SNNLayer(nn.Module): def __init__(self, input_size, hidden_size): super(SNNLayer, self).__init__() self.fc = nn.Linear(input_size, hidden_size) self.lif = snn.Leaky() def forward(self, x): spk_out, mem_potential = self.lif(self.fc(x)) return spk_out, mem_potential ``` 此代码片段展示了如何定义一个简单的SNN层,其中包含了线性变换和Leaky Integrate-and-Fire(LIF)类型的神经元模型。 #### 映射到神经形态硬件 为了使 SNN 可以运行在专用的低能耗设备上,研究者们开发出了多种针对特定架构优化过的映射算法。这些算法通常会考虑如何有效地分配计算资源以及减少通信开销等问题。 #### 卷积结构下的发展 近年来,随着卷积操作引入至 SNN 设计当中,出现了许多新颖而高效的深层架构。这类改进不仅增强了系统的表达能力,还进一步拓宽了应用场景范围,比如图像视频分析等领域[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值