
算法
沉醉不知处
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习算法(六) 贝叶斯分类-模拟离散数据
贝叶斯对模拟离散数据的训练,评估和预测 # import package import random import numpy as np from sklearn.naive_bayes import CategoricalNB from sklearn.model_selection import train_test_split # data prepare rng = np.random.RandomState(1) X = rng.randint(5, size = (600, 100))原创 2020-12-20 11:42:11 · 362 阅读 · 2 评论 -
机器学习算法(四) 朴素贝叶斯
线性分类: 硬分类,直接输出观测对应的分类。 线性判别分析 感知机 软分类,通过概率得到, 概率生成(注重不同特征之间的关系):高斯判别分析和朴素贝叶斯 概率判别(注重特征和标签的关系):Logistic 回归 思想:朴素贝叶斯假设(目的:简化运算) 条件独立性假设 简单的概率图(有向图)模型 给定x, 求y ? 0|1 P(y) 二分类:y~伯努利分布 多分类:y~categorial 分布 如果x离散,xi一般是ca...原创 2020-12-18 14:01:14 · 153 阅读 · 0 评论