
k近邻
沉醉不知处
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习算法(九) K近邻算法-对模拟数据回归&KNN预处理和分类马绞痛数据
利用k近邻对模拟数据回归&KNN预处理和分类马绞痛数据 import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsRegressor np.random.seed(0) # random 40,1 0-5 matrix, axis=0,1 sort by column,row X = np.sort(5 * np.random.rand(40, 1), axis = 0原创 2020-12-23 15:06:40 · 429 阅读 · 2 评论 -
机器学习算法(八) k近邻算法-分类
对两组数据进行分类和可视化 import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.neighbors import KNeighborsClassifier from sklearn import datasets # data prepare iris = datasets.load_iris() X = iris.data[:, :原创 2020-12-22 17:49:24 · 383 阅读 · 3 评论 -
机器学习算法(七) k近邻算法
K近邻(k Nearest Neighbors),顾名思义,就是对新数据进行判别时,它的类别由和它距离最近的k个已有数据来确定。 1,k值的选取 不断改变k的值,通过计算集合的方差,进行交叉验证,选取分类最好的作为最终k值。通常在[2,20]范围内选取。 2,距离的计算 样本之间的距离的计算,我们一般使用LP距离进行计算。当p=1时候,称为曼哈顿距离(Manhattan distance),当p=2时候,称为欧氏距离(Euclidean distance),当p=∞时候,称为极大距离(inft.原创 2020-12-21 14:59:07 · 340 阅读 · 0 评论