yolov3 yolo层 涉及到的数据的内存分布情况

本文深入解析YoloV3的内存布局,重点分析了yolo层在内存中的数据排布方式,以13*13的yolo层为例,详细介绍了每个cell产生3个boundingbox的数据结构和内存布局,对于理解YoloV3的工作原理和优化模型有重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整个 yolov3 涉及到的比较复杂的数据在内存排布 就是 yolo层了,根据代码理了下,主要是 根据entry_index()进行分析

yolov3有3个yolo层, 具体结构参考
https://medium.com/@chih.sheng.huang821/深度學習-物件偵測yolov1-yolov2和yolov3-cfg-檔解讀-75793cd61a01
这个网址估计不容易访问,直接贴图

yolov3结构
这个地方主要针对 上图中 yolov3的output1 (输入大小为13*13) 进行分析,其他的类似

在输入大小为13*13的yolo层中,假设类别数为80,
每个batch中一张图像对应的数据个数为 3*13*13*(4+1+80)
这些数据在内存中是连续的

13*13==169个cell, 每个cell产生3个bounding box,每个bounding box 数据为 13*13*(4+1+80)

内存布局如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值