kotaemon是一个基于RAG的开源框架,用于与文档进行对话,用于与你的文档聊天, 它支持实现Hybrid RAG和Graph RAG
链接: https://cinnamon.github.io/kotaemon/
这里我采用的离线安装方式
一、安装kotaemon,映射本地端口访问
conda create -n kotaemon python=3.10
git clone https://github.com/Cinnamon/kotaemon
pip install -e "libs/kotaemon[all]"
pip install -e "libs/ktem"
export HF_ENDPOINT=https://hf-mirror.com
cd scripts
bash run_linux.sh
这里就已经可以访问127.0.0.1:7860来进入ui界面了
Default username / password are: admin
/ admin
.
如果是远程服务器,可以做映射
ssh hoo@10.12.1.44 -L 127.0.0.1:7860:127.0.0.1:7860
端口默认是7860,当然也可以自己改
二、设置本地LLM及Embedding模型
由于本地服务器无法访问huggingface的api,所以这里我们选择设置本地LLM及Embedding模型,推荐Ollama OpenAI兼容的服务
1、安装ollama并启动程序
curl -fsSL https://ollama.com/install.sh | sh
拉取模型
ollama pull llama3.1:8b
ollama pull nomic-embed-text
2、 在Resources页面中的LLMs和Embedding分别设置LLM和Embedding
api_key: ollama
base_url: http://localhost:11434/v1/
model: llama3.1:8b (for llm) | nomic-embed-text (for embedding)
3、使用本地模型用于RAG
1) 将本地LLM和Embedding模型设置为default
2) 将File Collection中的Embedding设置为本地模型(例如: ollama)
3) 在Retrieval Setting页面,选择本地模型作为LLM相关模型。
现在就可以上传文件进行文档问答体验了。
三、设置本地的GraphRAG
pip install graphrag
piip install
为了使用本地模型来用GraphRAG,我们需要修改.env文件中的USE_CUSTOMIZED_GRAPHRAG_SETTING=true
然后调整 settings.yaml.example里面如下几个设置为true
参考:https://zhuanlan.zhihu.com/p/720088106