AI-043: Python深度学习5 - 深度学习用于计算机视觉

本文深入探讨卷积神经网络(CNN)的核心概念,包括其结构、特性与工作原理。解析CNN在小数据集上的训练策略,如数据增强、特征提取及微调,并展示中间输出、过滤器和类激活热力图的可视化技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络是计算机视觉应用的最普遍模型,本章介绍以下几点:

  • 卷积神经网络的简介:结构、特性、工作原理、最大池化
  • 小数据集上模型训练的三个策略:通过数据增强直接训练、通过预训练的网络进行特征提取、通过预训练的网络进行微调
  • 卷积神经网络的可视化:中间输出的可视化、过滤器的可视化、类激活的热力图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铭记北宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值