搭建本地AI知识库问答系统

1、Docker服务安装

安装教程:Ubuntu 安装 Docker

2、Ollama安装

2.1 下载ollama并安装:Ollama
// 查看是否安装正常
ollama --version
2.2 下载大语言模型

以阿里 通义千问14(8.2G)B为例(根据自己需求及服务器配置确定)
在这里插入图片描述
在这里插入图片描述

// 下载语言模型
ollama run qwen:14b

验证是否安装成功
在这里插入图片描述

2.3 下载向量模型

在这里插入图片描述

ollama pull shaw/dmeta-embedding-zh

// 测试语言模型api请求是否可以正常使用
curl 'http://localhost:11434/api/chat' \
--data '{
    "model": "qwen:7b",
    "messages": [
        {
            "role": "user",
            "content": "你是谁"
        }
    ],
    "temperature": 0.1,
    "stream": false
}'
// 测试向量模型api请求是否可以正常使用
curl 'http://localhost:11434/api/embeddings' \
--data '{
  "model": "shaw/dmeta-embedding-zh",
  "prompt": "天空是灰色的"
}'
2.4 下载 docker 文件 和 config 文件
mkdir kbqa
cd kbqa
curl -O https://harryai.cc/kbqa/docker-compose.yml
curl -O https://harryai.cc/kbqa/config.json

// 安装docker-compose
sudo curl -L "https://github.com/docker/compose/releases/download/v2.6.1/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
// 赋予二进制文件可执行权限
sudo chmod +x /usr/local/bin/docker-compose
// 启动 docker 并后台运行
docker-compose up -d
2.5 修改ollama服务配置文件
// 编辑文件
vim /etc/systemd/system/ollama.service
// 添加环境变量
Environment="OLLAMA_HOST=0.0.0.0"
// 重载 systemd 并重启 Ollama
systemctl daemon-reload
systemctl restart ollama

在这里插入图片描述
测试是否成功
地址栏输入:http://ip:11434
出现 Ollama is running 代表配置成功

3、配置One API渠道

访问路径http://ip:3001
在这里插入图片描述
在这里插入图片描述

// 查看模型列表
ollama list
// 查看运行的模型
ollama ps

配置qwen:7b和shaw/dmeta-embedding-zh

4、配置FastGPT

4.1 配置应用

注意:不管配置了啥最好都重启一下
访问路径http://ip:3000

创建AI对话
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果列表中没有自己安装的本地模型,可进行修改配置文件
进入到docker容器安装目录,修改config.json
在这里插入图片描述
修改配置文件后执行 docker restart fastgpt 重新启动容器

4.2 配置知识库

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/286563e815164fdcae86d89a286e7aeb.png
在这里插入图片描述
索引模型和文件处理模型中没有的话在config.json中进行配置,配置后重新启动fastgpt容器

4.3 添加数据集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
输入完成保存即可

4.4 应用关联知识库

在这里插入图片描述
一个应用只能关联同种向量模型的知识库(不能既关联模型A又关联模型B)

4.5 网页转Markdown(添加网页版文本数据)

链接:https://github.com/jina-ai/reader
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
网络链接格式 https://r.jina.ai/网络文章地址

4.6 PDF转Markdown

安装插件 pip install marker-pdf
使用命令 marker_single pdf路径 转换后文件路径

### 构建基于 NsaCab 和 Coze 的 AI 本地知识库问答机器人 #### 使用 Coze 平台的优势 Coze 是一款专为开发者设计的一站式 AI Bot 开发平台,允许用户无需深厚编程背景即可创建复杂的问答机器人[^1]。该平台不仅简化了机器人的开发流程,还提供了便捷的功能来部署和管理这些应用。 #### 集成 NsaCab 到 Coze 中的方法 为了实现一个高效的本地知识库查询系统,可以考虑采用 NsaCab 技术作为底层架构的一部分。具体来说,在 Coze 上建立的问答机器人可以通过 API 或 SDK 接口连接至运行有 NsaCab 引擎的服务端实例上,从而获取针对特定领域文档集的有效检索结果并返回给前端展示给最终使用者[^2]。 #### 实现过程中的关键技术点 - **数据准备**:确保所有必要的结构化与非结构化的文本资源都已经被妥善整理好,并上传到了能够被 NsaCab 访问的位置。 - **环境配置**:按照官方指南完成服务器端软件安装以及参数调整工作;同时也要注意客户端部分对于外部服务调用权限设置等问题。 - **接口对接**:编写适配器程序负责转发来自 Coze 聊天界面的消息请求到后台执行搜索操作,并接收反馈信息再呈现回对话框内供用户查看。 ```python import requests def query_nsa cab(knowledge_base_url, question): payload = {"query": question} response = requests.post(f"{knowledge_base_url}/search", json=payload) if response.status_code == 200: results = response.json() return results['answers'] else: raise Exception("Failed to retrieve answers from knowledge base.") ``` #### 发布与维护注意事项 当完成了上述步骤之后就可以利用 Coze 提供的各种工具轻松地将新建成的知识型聊天机器人分发出去让更多的人受益了。不过在此期间还需要持续关注性能表现情况以便及时作出优化改进措施以保持良好的用户体验水平[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值