良序原理应用3--证明素数分解定理

证明:每个大于1的正整数都可以分解为质数的乘积


证明思路

  1. 假设存在不能分解为质数乘积的整数

    • CCC 为所有不能分解为质数乘积的整数的集合:
      C={n∈Z+∣n>1 且 n 不能分解为质数的乘积}. C = \{ n \in \mathbb{Z}^+ \mid n > 1 \text{ 且 } n \text{ 不能分解为质数的乘积} \}. C={nZ+n>1  n 不能分解为质数的乘积}.
    • 假设 CCC 非空。
  2. 应用良序原理

    • 根据良序原理(WOP),CCC 中存在最小元素 nnn
  3. 分析最小反例 nnn

    • nnn 不能是质数,因为质数本身是长度为1的质数乘积。
    • 因此,nnn 必须是合数,即存在整数 aaabbb,使得 n=a⋅bn = a \cdot bn=ab,且 1<a,b<n1 < a, b < n1<a,b<n
  4. 推导矛盾

    • 由于 aaabbb 都小于 nnn,且 nnnCCC 的最小元素,aaabbb 都不属于 CCC
    • 因此,aaabbb 都可以分解为质数的乘积:
      a=p1p2⋯pk,b=q1q2⋯ql. a = p_1 p_2 \cdots p_k, \quad b = q_1 q_2 \cdots q_l. a=p1p2pk,b=q1q2ql.
    • 于是,n=a⋅b=p1p2⋯pkq1q2⋯qln = a \cdot b = p_1 p_2 \cdots p_k q_1 q_2 \cdots q_ln=ab=p1p2pkq1q2ql 也可以分解为质数的乘积,与 n∈Cn \in CnC 矛盾。
  5. 结论

    • 假设 CCC 非空导致矛盾,因此 CCC 必须为空集。
    • 即每个大于1的正整数都可以分解为质数的乘积。

证明

步骤1:假设存在不能分解为质数乘积的整数
  • CCC 为所有不能分解为质数乘积的整数的集合:
    C={n∈Z+∣n>1 且 n 不能分解为质数的乘积}. C = \{ n \in \mathbb{Z}^+ \mid n > 1 \text{ 且 } n \text{ 不能分解为质数的乘积} \}. C={nZ+n>1  n 不能分解为质数的乘积}.
  • 假设 CCC 非空。
步骤2:应用良序原理
  • 根据良序原理(WOP),CCC 中存在最小元素 nnn
步骤3:分析最小反例 nnn
  • nnn 不能是质数,因为质数本身是长度为1的质数乘积。
  • 因此,nnn 必须是合数,即存在整数 aaabbb,使得 n=a⋅bn = a \cdot bn=ab,且 1<a,b<n1 < a, b < n1<a,b<n
步骤4:推导矛盾
  • 由于 aaabbb 都小于 nnn,且 nnnCCC 的最小元素,aaabbb 都不属于 CCC
  • 因此,aaabbb 都可以分解为质数的乘积:
    a=p1p2⋯pk,b=q1q2⋯ql. a = p_1 p_2 \cdots p_k, \quad b = q_1 q_2 \cdots q_l. a=p1p2pk,b=q1q2ql.
  • 于是,n=a⋅b=p1p2⋯pkq1q2⋯qln = a \cdot b = p_1 p_2 \cdots p_k q_1 q_2 \cdots q_ln=ab=p1p2pkq1q2ql 也可以分解为质数的乘积,与 n∈Cn \in CnC 矛盾。
步骤5:结论
  • 假设 CCC 非空导致矛盾,因此 CCC 必须为空集。
  • 即每个大于1的正整数都可以分解为质数的乘积。

总结

通过良序原理,我们证明了每个大于1的正整数都可以分解为质数的乘积。这一证明展示了良序原理在数学证明中的强大作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值