证明:每个大于1的正整数都可以分解为质数的乘积。
证明思路
-
假设存在不能分解为质数乘积的整数:
- 设 CCC 为所有不能分解为质数乘积的整数的集合:
C={n∈Z+∣n>1 且 n 不能分解为质数的乘积}. C = \{ n \in \mathbb{Z}^+ \mid n > 1 \text{ 且 } n \text{ 不能分解为质数的乘积} \}. C={n∈Z+∣n>1 且 n 不能分解为质数的乘积}. - 假设 CCC 非空。
- 设 CCC 为所有不能分解为质数乘积的整数的集合:
-
应用良序原理:
- 根据良序原理(WOP),CCC 中存在最小元素 nnn。
-
分析最小反例 nnn:
- nnn 不能是质数,因为质数本身是长度为1的质数乘积。
- 因此,nnn 必须是合数,即存在整数 aaa 和 bbb,使得 n=a⋅bn = a \cdot bn=a⋅b,且 1<a,b<n1 < a, b < n1<a,b<n。
-
推导矛盾:
- 由于 aaa 和 bbb 都小于 nnn,且 nnn 是 CCC 的最小元素,aaa 和 bbb 都不属于 CCC。
- 因此,aaa 和 bbb 都可以分解为质数的乘积:
a=p1p2⋯pk,b=q1q2⋯ql. a = p_1 p_2 \cdots p_k, \quad b = q_1 q_2 \cdots q_l. a=p1p2⋯pk,b=q1q2⋯ql. - 于是,n=a⋅b=p1p2⋯pkq1q2⋯qln = a \cdot b = p_1 p_2 \cdots p_k q_1 q_2 \cdots q_ln=a⋅b=p1p2⋯pkq1q2⋯ql 也可以分解为质数的乘积,与 n∈Cn \in Cn∈C 矛盾。
-
结论:
- 假设 CCC 非空导致矛盾,因此 CCC 必须为空集。
- 即每个大于1的正整数都可以分解为质数的乘积。
证明
步骤1:假设存在不能分解为质数乘积的整数
- 设 CCC 为所有不能分解为质数乘积的整数的集合:
C={n∈Z+∣n>1 且 n 不能分解为质数的乘积}. C = \{ n \in \mathbb{Z}^+ \mid n > 1 \text{ 且 } n \text{ 不能分解为质数的乘积} \}. C={n∈Z+∣n>1 且 n 不能分解为质数的乘积}. - 假设 CCC 非空。
步骤2:应用良序原理
- 根据良序原理(WOP),CCC 中存在最小元素 nnn。
步骤3:分析最小反例 nnn
- nnn 不能是质数,因为质数本身是长度为1的质数乘积。
- 因此,nnn 必须是合数,即存在整数 aaa 和 bbb,使得 n=a⋅bn = a \cdot bn=a⋅b,且 1<a,b<n1 < a, b < n1<a,b<n。
步骤4:推导矛盾
- 由于 aaa 和 bbb 都小于 nnn,且 nnn 是 CCC 的最小元素,aaa 和 bbb 都不属于 CCC。
- 因此,aaa 和 bbb 都可以分解为质数的乘积:
a=p1p2⋯pk,b=q1q2⋯ql. a = p_1 p_2 \cdots p_k, \quad b = q_1 q_2 \cdots q_l. a=p1p2⋯pk,b=q1q2⋯ql. - 于是,n=a⋅b=p1p2⋯pkq1q2⋯qln = a \cdot b = p_1 p_2 \cdots p_k q_1 q_2 \cdots q_ln=a⋅b=p1p2⋯pkq1q2⋯ql 也可以分解为质数的乘积,与 n∈Cn \in Cn∈C 矛盾。
步骤5:结论
- 假设 CCC 非空导致矛盾,因此 CCC 必须为空集。
- 即每个大于1的正整数都可以分解为质数的乘积。
总结
通过良序原理,我们证明了每个大于1的正整数都可以分解为质数的乘积。这一证明展示了良序原理在数学证明中的强大作用。