离散数学练习题--问题3.5和启发

划重点:通过问题3.5展示了循环论证等逻辑陷阱,以及它对我们日常进行逻辑推理带来的启发

Problem 3.5.

Sloppy Sam is trying to prove a certain proposition PPP. He defines two related propositions QQQ and RRR, and then proceeds to prove three implications:
P IMPLIES Q,Q IMPLIES R,R IMPLIES P. P\text{ IMPLIES } Q,\quad Q\text{ IMPLIES } R,\quad R\text{ IMPLIES } P. P IMPLIES Q,Q IMPLIES R,R IMPLIES P.

He then reasons as follows:

If Q is true, then since I proved Q IMPLIES R, I can conclude that R is true. Now, since I proved R IMPLIES P, I can conclude that P is true. Similarly, if R is true, then P is true and so Q is true. Likewise, if P is true, then so are Q and R. So any way you look at it, all three of P, Q and R are true.

(a) Exhibit truth tables for
(PIMPLIES⁡Q)AND⁡(QIMPLIES⁡R)AND⁡(RIMPLIES⁡P)(*) (P\operatorname{IMPLIES} Q)\operatorname{AND} (Q \operatorname{IMPLIES} R) \operatorname{AND} (R \operatorname{IMPLIES} P) \tag{*} (PIMPLIESQ)AND(QIMPLIESR)AND(RIMPLIESP)(*)
and for
PAND⁡QAND⁡R.(**) P\operatorname{AND} Q \operatorname{AND} R. \tag{**} PANDQANDR.(**)

Use these tables to find a truth assignment for PPP, QQQ, RRR so that (*) is TTT and (**) is FFF.

(b) You show these truth tables to Sloppy Sam and he says “OK, I’m wrong that PPP, QQQ and RRR all have to be true, but I still don’t see the mistake in my reasoning. Can you help me understand my mistake?” How would you explain to Sammy where the flaw lies in his reasoning?

答:(a) 先计算如下这张真值表

PPPQQQRRRP→QP\to QPQQ→RQ\to RQRR→PR\to PRP(P→Q)∧(Q→R)∧(R→P)(P\to Q)\land (Q \to R)\land (R \to P)(PQ)(QR)(RP)P∧Q∧RP\land Q\land RPQR
TTTTTTTT
TTFTFTFF
TFTFTTFF
TFFFTTFF
FTTTTFFF
FTFTFTFF
FFTTTFFF
FFFTTTTF

从表中可看出:P=FP=FP=F, Q=FQ=FQ=F, R=FR=FR=F可使得(*) is TTT and (**) is FFF

逻辑推理启示:日常生活中的明智思考

在逻辑学课堂中,问题 3.5 看似是一个简单的习题,讲述了“马虎的萨姆”(Sloppy Sam)试图证明一个命题时犯下的推理错误。然而,深入分析这个问题,我们会发现它蕴含着深刻的逻辑思维启示,这些启示对于我们在日常生活中进行明智的思考和判断至关重要。 与其说这仅仅是一个逻辑习题,不如说它是一面镜子,映照出我们日常推理中容易陷入的误区,并指引我们走向更清晰、更严谨的思考方式。

启发一:警惕循环论证的陷阱 - 论证要站得住脚,不能“原地打转”

问题 3.5 中,萨姆洋洋得意地证明了三个蕴含关系:P 蕴含 Q,Q 蕴含 R,R 蕴含 P。 他据此认为 P、Q、R 必定都为真。但真值表分析却揭示,即使这三个蕴含式都为真,P、Q、R 完全可以都是假的! 萨姆犯的正是 循环论证 的错误。他的论证就像一个环形跑道,起点和终点都在同一个地方,看似跑了一圈,实则原地踏步,没有真正向前。

在生活中,我们有时也会陷入类似的“循环论证”。 例如,某些“成功学”大师可能会这样论证:“我的成功学课程 之所以有效,是因为它能帮助你 获得成功。而我 怎么知道 我的课程能让你 获得成功 呢? 因为 那些成功人士都上了我的课程,并证明了课程的 有效性。” 仔细分析,你会发现这个论证其实空洞无物,“有效性” 和 “成功” 互相定义,互相支撑,但都没有 独立的、外部的证据 来证明课程真的有效。 这就如同问题 3.5 中的 Sloppy Sam,看似论证严密,实则只是在逻辑的环路上空转。

启发: 在进行逻辑推理时,要时刻警惕 “循环论证” 的陷阱。 任何结论的成立,都需要有 独立于结论本身、站得住脚的证据 来支撑。 要像审视环形跑道一样,检查你的论证链条是否形成闭环,避免在逻辑的迷宫中原地打转。

启发二:区分蕴含与等价 - “如果…那么…” 不等于 “当且仅当…”

Sloppy Sam 的另一个错误,在于他混淆了逻辑上的 蕴含关系 (Implication)等价关系 (Equivalence)。 他把 P  ⟹  QP \implies QPQ (P 蕴含 Q) 理解成了 P↔QP \leftrightarrow QPQ (P 等价于 Q), 认为 “如果 Q 为真,那么 P 也为真” 的反向推导也必然成立。 然而,蕴含只是单向的逻辑箭头,“如果…那么…” 并不等同于 “当且仅当…”。

在日常生活中,这种混淆也十分常见。 例如,我们常说 “如果 你努力学习,那么 你就能取得好成绩。” 这句话表达的是一种美好的期望和鼓励,希望 “努力学习” 这个行为能 引导 “取得好成绩” 这个结果。 但如果我们错误地将其理解为 逻辑等价, 就会得出一些不符合实际的推论:

  • 错误推论 1 (反向蕴含):如果 我取得了好成绩,那么 我一定是因为努力学习了。” (实际情况可能是因为天赋异禀,或是考试技巧高超等其他原因。)
  • 错误推论 2 (否定前件否定后件):如果 我不努力学习,那么 我一定不能取得好成绩。” (实际情况可能是天资聪颖,不努力也能轻松取得好成绩。)

这些错误推论都源于将单向的 “蕴含” 误读为双向的 “等价”。 “努力学习” 可能 是 “取得好成绩” 的 一个重要因素, 但它 不是唯一因素,也不是充要条件

启发: 要时刻牢记 “如果…那么…” 只是单向的逻辑箭头,它只保证了前件为真时后件也为真,但并不意味着后件为真时前件也必须为真,更不意味着前件为假时后件也必然为假。 在进行逻辑推理和解读信息时,要仔细辨析语句表达的是 单向的引导, 还是 双向的绑定, 避免将 “蕴含” 误当成 “等价”, 做出错误的推断。

启发三:理解蕴含的真值条件 - “条件不真”, 蕴含依然可能成立,结论不一定为假

真值表还告诉我们,蕴含式 P  ⟹  QP \implies QPQ 只有在 “P 真 Q 假” 的情况下才为假, 在 “P 假” 的情况下, 无论 Q 真假, P  ⟹  QP \implies QPQ 都为真。 Sloppy Sam 的推理错误,也源于他忽略了蕴含式前件为假时的情况。

这种看似有点 “反直觉” 的逻辑特性,在日常生活中也常常被误解。 例如,某公司宣布一项规则:“如果 员工迟到(P),那么 扣除当月绩效奖金(Q)。”

有些人可能会这样理解:“公司说了,‘如果迟到就扣钱’, 反过来,如果我不迟到(非 P),公司就一定不会扣我钱(非 Q)。” 但这种理解是错误的。 公司的规则 只明确了 “迟到” 这个条件 与 “扣工资” 这个结果之间的关联, 并没有保证 “不迟到” 就一定 “不扣工资”。 员工可能因为其他原因 (例如,工作表现不佳、违反其他规定等) 被扣工资。 即使员工没有迟到 (P 为假), “如果迟到就扣工资” 这个规则 依然有效 (为真), 但这并不意味着员工就一定 “不被扣工资 (非 Q)”。

启发: 在理解 “如果…那么…” 类型的规则、承诺或警告时, 要 全面理解蕴含关系的真值条件。 “如果” 的条件成立, “那么” 的后果会发生, 这是规则明确指出的。 但 “如果” 的条件 不成立, “那么” 的后果 不一定不会发生, 也可能因为其他原因而发生。 不要将 “如果…那么…” 的单向约束, 错误地理解为对所有情况的全面规定。

启发四:形式化思维的价值 - 让逻辑更清晰,减少主观臆断

最后,问题 3.5 以及真值表分析,都体现了 形式化思维 在逻辑推理中的重要价值。 真值表就是一个简单的形式化工具, 它将复杂的命题公式, 用清晰的表格形式展现出来, 让我们能够 客观地、全面地 分析各种真值组合下的公式真值, 从而发现 Sloppy Sam 推理的错误, 找到反例, 验证逻辑的有效性。

在日常生活中,虽然我们不需要像逻辑学家那样动辄列真值表, 但 借鉴形式化思维的优点, 培养结构化、逻辑化的思考习惯, 对于提升我们的思考质量至关重要。 例如,在面对复杂问题时, 我们可以尝试:

  • 明确概念: 将问题中涉及的关键概念清晰地定义出来, 避免使用模糊不清的词语。
  • 理清关系: 分析问题中各个要素之间的逻辑关系, 用简洁的符号或图表将这些关系表示出来。
  • 检验推论: 对于各种解决方案或观点, 尝试从逻辑上推演其可能的结果, 寻找反例, 检验其可行性和潜在风险。

通过这些形式化的思考方法, 我们可以 减少主观臆断, 避免思维的盲点, 让逻辑更清晰, 推理更严谨, 从而在工作、学习和生活中做出更明智、更合理的决策。

总结: 从 Sloppy Sam 的错误中学习明智思考

问题 3.5 看似是一个小小的逻辑习题, 却蕴含着深刻的逻辑推理启示。 它通过 Sloppy Sam 这个 “反面教材”, 提醒我们: 逻辑推理并非直觉和感觉的简单叠加, 而是一项需要严谨性和精确性的思维活动。 要避免循环论证的陷阱, 区分蕴含与等价的微妙差别, 理解蕴含关系的真值条件, 并学习运用形式化的思维工具。 掌握这些逻辑推理的原则和技巧, 将帮助我们成为更明智的思考者, 在信息爆炸、观点纷繁复杂的世界中, 拨开迷雾, 看清真相, 做出更理性、更明智的判断和行动。 让我们从 Sloppy Sam 的错误中吸取教训, 在日常生活中不断磨练自己的逻辑思维, 成为更清晰、更理性的思考者。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值