面试复盘(数据分析)

1.数据分析师最重要的能力是什么?能够给企业带来什么?

  • 量化业务:指标体系——基础是了解全流程,全业务线的业务
  • 分析市场和行业趋势:生态链,业务模式,竞品,产品发展方向
  • 利用数据技术解决业务难题:决策类,分类/精细化策略,销转链路的优化

2.项目怎么写?(项目是一个星期都解决不了的业务难题)

项目背景

  • 主要说明这个项目为什么必须要解决,说明做项目的必要性,突出问题很重要,问题很难
  • 业务的业务逻辑是什么?按照这个逻辑解决这个问题应该从什么方向入手(可以不写入简历,但是一定要在准备项目的时候写清楚)

项目的逻辑

  • 为什么必须选择方案A?强调A方案的必要性,说明为什么别的方案不行

项目的主要策略/目标

  • 体现问题的拆解思路
  • 体现你对于目标的量化能力(是数据分析师的核心能力)

项目的主要工作是做了什么?什么工作是在这个项目中起决定性作用的

  • 写出关键的策略,以及策略的效果
  • 介绍主要的方案与方案的逻辑
  • 把监控数据,分析数据之后做了什么策略优化说明白
  • 说明项目中最能体现难的技术或者业务思考(模式,策略,方法的改进)

项目的业绩

  • 从量的提高到质量的优化再到销售额的提升
  • KPI的直接效果
  • 对核心目标的效果

3.面试要表达什么内容?

  • 我能胜任岗位:不是表达自己在以前的岗位做得多好,而是提炼方法论,抽象出模式,然后套用到新的工作上去,在此基础上再表现自己很优秀
  • 我愿意来贵司上班:我对您的工作有好奇
  • 我能让您愿意与我共事
  • 关键问题要尽量答的又全面又好,不关键的问题要尽量准确简洁,需要控制好面试的节奏
  • 如果简历里的干扰项(与被面岗位无关,容易让面试官分心的内容)太多,面试的节奏就不容易把控好

4.未来规划问题怎么答?

  • 关键点:我的未来规划是想要在贵公司长期效力的
  • 公司所在行业的长远发展的预期
  • 岗位的长远发展的预期:岗位短时间能够给公司带来什么价值?长期能够带来什么价值?

5.业务细节没做过怕露馅怎么办?

  • 指标体系,是日常观察到的业务情况
  • 梳理明白:客户从哪里来?企业如何引导客户消费?消费之后的客户是否需要维护?如何服务与维护?销(营销)转(转化)链路
  • 通过多次面试来优化,多演练几次,找人看其中的逻辑错误

6.如何准备面试?

  • 找一个目标JD
  • 拆解JD关键词
  • 查漏补缺
  • 找与目标JD相似的JD,拆解JD,并仿写简历,投递试手(能够避免被大厂拉黑,大厂都有面试评价系统,说明为什么会拒绝/通过这个面试者,会影响面试官第一印象)
  • 优化简历,优化自我介绍和项目介绍的话术

7.如何找招股说明书?

招股说明书会介绍公司的业务,业务规模,行业的模式,市场规模等关键数据,对理解公司的业务很有帮助(没有上市的公司只能通过公司所在行业,搜索行业研报来侧面了解以上信息)

  • 搜索公司上市的交易所
  • 到交易所的官网,搜索公司名称
  • 找公司的招股说明书

8.怎么谈高薪?

  • 准备好每一场面试,尤其是倒数第二面的高管面试,可以提前去搜索高管对于公司发展的一些公开演说和访谈,了解产品定位和产品展望
  • 一定要提前了解企业所在的行业情况
  • 多面试多拿offer

9.怎么打开一个市场?

  • 目标
  • 搭建团队
  • 跑通业务
  • 占领市场
  • 提升细分市场满意度
  • 商业化

10.工作经验

对日常工作的理解

  • 业务模式
  • 业务目标:企业赚的是什么钱,用什么流程,什么方法赚钱
  • 日常绩效

对工作难题的理解

  • 解决问题的必要性(问题的挑战难度)
  • 解决问题方案的必要性

对行业的理解

  • 行业大盘有多大?
  • 行业的生态是什么样的?
  • 行业里参与的竞对有哪些?
  • 竞争模式一般是什么样的?

11.自我介绍应该怎么做?

  • 简短地介绍自己的工作经历和学历
  • 说明自己与目标岗位匹配的工作内容:①需要介绍自己所在企业的业务模式 ②需要介绍自己所在部门的业务与整个企业的业务模式的匹配情况
  • 强调自己很优秀

12.类比问题

你的业务有A场景,我的业务也有类似的场景,我把我的场景举例出来,你说说你对这个场景的解决方案

  • 面试者:我在做立项的时候,参考了公司内部的问卷调查系统的结果
  • 面试官:你在收集问题的时候有没有水军,你是如何考虑的?
  • 错误答法:我没有遇到过这样的情况

考察的是你对于技术场景的知识积累,也考察你对于问题的拆解(思考能力)和解决能力

如何回答?

  • 首先这个问题我是如何拆解的?遇到这个问题,可能有什么情况(只给一个答案基本只能得一半的分数)压力面的一个重要的点在于对于问题的拆解是不是符合MECE原则
  • 我是如何针对具体的拆解结果去设计方案的?
  • 我是如何为这些方案去设计考核指标的?

13.面试如何保持节奏/状态?

  • 集中注意力:听明白问题
  • 少出差错:想明白了再回答

14.随机抽取好还是全局抽取好

  • 对于自己公司里的审核人员做问卷调查
  • 如果能看到总体的情况,肯定是总体更好

考虑点:

  • 这两个选择对于公司意味着什么?
  • 哪个能提高效率?
  • 哪个能提高业务质量?
  • 哪个能节约成本?

15.什么决定实验的样本量大小?

  • 在于H0的置信区间的设置
  • 5次和3次如果算作显著差别:A
  • 5次和1次如果算作显著差别:B
  • A和B的样本量是不一样的

16.你最喜欢用的产品?

  • 业务模式,盈利模式,生态链
  • 快手:是通过链接视频生产者和视频消费者的平台
  • 快手的生态链是从视频生产者,包括普通视频生产者UGC和专业视频生产者PGC和其MCN机构组成;平台连接的是广大国内短视频用户群体。用户通过平台消费视频生产者生产的短视频,直播内容。广告商通过平台广告投放,平台能够赚取广告费用,电商企业通过平台直播带货,平台能够收取直播服务费用
  • 整个平台的近期主要目标
  • 做短视频市场的有:抖音
  • 整个短视频用户规模:8亿左右,创作者规模,广告规模
  • 现在基本上是处于一个存量时代,产品之间的竞争体现在对于用户 / 创作者 / 广告主的争夺

规模怎么知道有多大?

  • 行业分析报告:QuestMobile,艾瑞(互联网)
  • 看行业的咨询公司是否有公开报告?有一个APP慧博投资分析每天打卡可以免费下载行业报告
  • 看行业的近期IPO的公司发出的招股说明书,有行业的概述部分

17.如果让你改进这个产品,你会如何改进?

  • 背景:介绍为什么必须改进这个点?
  • 目的:解决这个问题能够获得什么?
  • 方案:必须要采用的方案有哪些?解决的是哪些拆分出来的问题?

18.现在要你写一个品牌的前三季度报告,怎么写,有框架吗?从哪些方向写?

  • 品牌的目标是什么?在理解目标的基础上,才能知道哪些大的指标是有用的,哪些是不那么重要的
  • 品牌为达成这个目标做了什么方案?评估方案的有效性
  • 品牌的具体团队为这个方案做了什么具体的工作?评估工作的绩效
  • 如何达成目标?第四季度应该做什么改进?

19.针对不同的行业要写不同版本的简历吗?

  • 针对同一个公司不同的JD都要写不同的简历,不要偷懒
  • 项目也需要根据JD做调整

20.给你两周时间,写一份陌生行业的分析报告,你会怎么做

  • 行业基础研究的目录层次:基础知识,经营环境,市场特征,商业模式分析,产业链,业内主要企业,未来发展趋势,成功融资案例,行业评价

21.面试流程

电话面:判断合格(HR,主管)工作经验和项目

技术面:口试SQL,估算问题

业务面:项目,面试作品(主管,导师,leader)(很多人在这一面挂)

交叉面:逻辑

HR第一次面:常规面

HR第二次面:谈薪

22.数据分析流程是什么样的?

<think>嗯,用户问的是怎么准备数据分析面试。我得先理清楚这个问题需要涵盖哪些方面。首先,数据分析面试通常包括技术问题、业务场景题、统计知识还有行为面试部分。可能用户是刚开始找工作,或者想转行做数据分析,需要全面的指导。 技术方面,SQL和Python/R是必须的。SQL可能会考窗口函数、聚合函数,还有优化问题。Python的话,pandas、numpy这些库的应用,数据清洗、处理,可能还有算法题。用户可能需要具体的例子或者学习资源推荐。 然后是统计知识,假设检验、概率题、A/B测试设计这些常见考点。比如p值、置信区间、t检验、z检验的区别和应用场景。这部分需要简明扼要的解释,避免太复杂的公式,但又要准确。 业务场景题可能会问如何分析某个指标下降的原因,或者设计一个指标评估活动效果。这里需要结构化思维,比如拆解指标、提出假设、验证方法等。用户可能需要例子来说明如何回答这类问题。 项目经验部分,用户需要准备好简历上的项目,用STAR法则描述,突出自己的贡献和解决的问题。面试官可能会深挖细节,所以必须对项目的每个环节都熟悉。 行为面试问题,比如团队合作、遇到的挑战,这些需要提前准备故事,展示软技能。可能用户需要知道如何具体回答,比如用什么样的结构,比如STAR模式。 另外,可能还要提到公司调研,了解他们的业务和数据驱动的文化,这样面试时可以更有针对性。还有模拟面试的重要性,找朋友练习或者录下来自己复盘。 需要确保回答结构清晰,分点列出,每个部分有子点,可能用加粗或者编号。但用户要求用中文,而且不能使用markdown,所以得用自然的分段和标题。比如分为技术准备、统计知识、业务思维、项目复盘、行为面试、公司调研、模拟面试等部分。 还要注意用户提到的系统级指令,数学公式用$...$,但用户的问题可能不涉及太多公式,不过如果有统计部分可能需要,比如假设检验的公式。比如p值的计算,或者置信区间的公式,这时候要用正确的LaTeX格式,并且行内公式用$...$,独立公式用$$...$$。但根据用户的问题,可能这部分内容不多,但需要留意。 用户可能需要资源推荐,比如LeetCode、牛客网刷SQL题,《统计学习方法》之类的书籍,或者网课推荐。但不确定用户是否需要,所以可能放在最后作为补充,或者简要提及。 最后要确保回答真实可靠,不给出错误的信息,比如SQL的正确用法,统计概念的正确解释。如果有不确定的地方,需要避免或者注明。比如A/B测试的注意事项,样本量计算的方法等,要准确。 现在整合这些思考,组织成一个结构化的回答,分步骤说明,每个部分详细但不过于冗长。可能需要用序号或者分点,但用户要求不使用markdown,所以用自然的中文分段落,加上标题式的引导词,比如“一、技术基础准备”,“二、统计知识巩固”等,但可能更口语化一些。 检查是否有遗漏的部分,比如简历准备、沟通技巧,或者面试后的跟进。但用户主要问的是准备面试,可能重点在面试前的准备,所以可以集中在技术、统计、业务、项目、行为、公司调研、模拟这几个方面。 总结下来,回答的结构大概是: 1. 技术基础(SQL、Python/R、数据可视化) 2. 统计知识(假设检验、概率题、A/B测试) 3. 业务思维(指标分析、场景题、案例分析) 4. 项目复盘(项目细节、挑战、成果) 5. 行为面试(团队合作、解决问题) 6. 公司调研(业务模式、数据应用) 7. 模拟面试(练习、反馈) 每个部分给出具体的学习方法和例子,比如SQL的常见题目类型,如何练习,业务题的回答框架(拆解指标、提出假设、数据验证等)。 还要提醒用户注意沟通表达,清晰有条理,即使不确定也要展示思考过程。最后鼓励用户多练习,保持自信。 现在开始组织语言,确保每个部分简洁明了,符合用户的要求,使用中文,不使用markdown,行内公式正确,如果有的话。比如在统计部分提到假设检验时,可能需要公式如$H_0$和$H_1$,或者p值的定义,这时候用$符号包裹。但根据用户的问题,可能公式不多,但需要留意。</think>准备数据分析面试需要系统性地覆盖技术能力、业务思维、统计知识、项目经验及行为面试。以下是分步骤的详细指南: --- ### **一、技术基础准备** 1. **SQL** - **高频考点**:聚合函数(`SUM`、`COUNT`)、窗口函数(`ROW_NUMBER`、`RANK`)、多表连接(`JOIN`)、子查询、查询优化(索引、执行效率)。 - **刷题平台**:LeetCode、牛客网,重点练习“留存率计算”“排行榜问题”等高频题型。 - **注意点**:熟悉`EXPLAIN`分析查询性能,避免全表扫描。 2. **Python/R** - **数据处理**:掌握`pandas`(数据清洗、`groupby`合并)、`numpy`(向量化运算);或R的`dplyr`、`tidyr`。 - **算法题**:刷简单-中等难度题目(如LeetCode),重点练习链表、字符串、二分查找。 - **加分项**:了解常用库(如`scikit-learn`用于基础机器学习)。 3. **数据可视化** - 能解释常见图表(如箱线图、热力图)的应用场景,用`Matplotlib`/`Seaborn`或`Tableau`绘制样例。 --- ### **二、统计知识巩固** 1. **假设检验** - 掌握流程:定义$H_0$和$H_1$→选择检验方法(t检验、卡方检验)→计算p值→结论。 - **常见问题**:p值的含义、第一类错误 vs 第二类错误、如何选择单双尾检验。 2. **概率题** - 重点题型:贝叶斯定理(如疾病检测问题)、排列组合(如抽球概率)、期望计算。 3. **A/B测试** - 能回答:如何确定样本量?如何分析结果(显著性、置信区间)?如何应对辛普森悖论? --- ### **三、业务思维与场景题** 1. **指标分析** - **框架**:明确问题→拆解指标(如DAU下降=新用户+老用户)→提出假设→验证方法(如维度下钻)。 - **举例**:如何分析“某日GMV骤降”?可能的假设:服务器故障、活动效果差、竞品动作等。 2. **场景设计** - **常见题**:设计一个指标评估功能上线效果;如何判断用户流失原因? - **回答逻辑**:从业务目标出发→选择核心指标→设计数据采集方案→分析维度(如用户分群)。 --- ### **四、项目复盘与表达** 1. **项目深挖** - 用STAR法则描述项目:背景(Situation)、任务(Task)、行动(Action)、结果(Result)。 - **准备细节**:数据来源是否可靠?是否考虑过偏差?如何验证结果? 2. **挑战与解决** - 举例:“数据缺失时如何处理?”→答案可能包括填充均值、多重插补或业务逻辑推断。 --- ### **五、行为面试准备** 1. **高频问题** - 团队合作冲突如何解决? - 最有成就感的数据分析案例? - 如何向非技术人员解释复杂结论? 2. **回答技巧** - 结合具体案例,突出分析能力与沟通能力(如:“我曾用类比法向产品经理解释置信区间”)。 --- ### **六、公司调研与适配** 1. **了解业务** - 研究公司核心业务(如电商关注复购率、内容平台关注停留时长),准备相关分析思路。 2. **文化匹配** - 提前了解团队技术栈(如Hive还是Spark)和数据驱动程度,面试中表达适配性。 --- ### **七、模拟面试与反馈** 1. **实战演练** - 找同行模拟技术面试,用“白板”手写SQL/Python代码。 - 录制回答行为问题的视频,观察表达流畅度。 2. **复盘调整** - 针对卡壳的问题重新梳理逻辑,确保回答简洁(如用“总分总”结构)。 --- ### **资源推荐** - **书籍**:《SQL必知必会》《统计学七支柱》 - **课程**:Coursera的《Data Science专项课程》 - **面经**:牛客网、一亩三分地论坛搜“数据分析岗” --- **最后提醒**:面试中遇到不确定的问题,可先复述问题确认理解,再逐步拆解展示思考过程。保持自信,体现“数据驱动业务”的思维!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值