Python n条水平平行线与m条垂直平行线相交的平行四边形的数量(Number of parallelograms when n horizontal parallel lines intersect m vertical parallel lines)
给定两个正整数n和m。任务是计算 n 条水平平行线与 m 条垂直平行线相交可以形成任意大小的平行四边形的数量。
例子:
输入:n = 3, m = 2
输出:3
2个尺寸为 1x1 的平行四边形和 1 个尺寸为 2x1 的平行四边形。
输入:n = 5, m = 5
输出:100
这个想法是使用组合,即从给定的 n 个项目中选择 k 个项目的方式数由n C r,表示如图:给出。
要形成平行四边形,我们需要两条水平平行线和两条垂直平行线。因此,选择两条水平平行线的方式数为n C 2,表示如图:,选择两条垂直平行线的方式数为m C 2,表示如图:
。因此,可能的平行四边形总数为n C 2 x m C 2,表示如图:
。
以下是此方法的实现:
# Python Program to find number of parallelogram when
# n horizontal parallel lines intersect m vertical
# parallel lines.
MAX = 10;
# Find value of Binomial Coefficient
def binomialCoeff(C, n, k):
# Calculate value of Binomial Coefficient
# in bottom up manner
for i in range(n + 1):
for j in range(0, min(i, k) + 1):
# Base Cases
if (j == 0 or j == i):
C[i][j] = 1;
# Calculate value using previously
# stored values
else:
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
# Return number of parallelogram when n horizontal
# parallel lines intersect m vertical parallel lines.
def countParallelogram(n, m):
C = [[0 for i in range(MAX)] for j in range(MAX)]
binomialCoeff(C, max(n, m), 2);
return C[n][2] * C[m][2];
# Driver code
if __name__ == '__main__':
n = 5;
m = 5;
print(countParallelogram(n, m));
# This code is contributed by 29AjayKumar
输出:
100
时间复杂度: O(n 2 ) ,如图:
辅助空间: O(n 2 ),如图:
使用基础数学
同样的问题可以通过使用基本数学来解决,因为我们知道n C 2 = n*(n-1)/2, m C 2,表示如图: 也是如此,所以只需使用基本数学,我们就可以在 O(1) 中解决这个问题
以下是上述方法的实现:
def find_the_parallelogram(n, m):
# Calculate the number of parallelograms using the formula:
# nC2 = (n * (n - 1)) / 2
# mC2 = (m * (m - 1)) / 2
result = ((n * (n - 1)) // 2) * ((m * (m - 1)) // 2)
return result
# Driver code
if __name__ == "__main__":
n = 5
m = 5
print(find_the_parallelogram(n, m))
输出:
100
时间复杂度:O(1)
空间复杂度:O(1)
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。