【Hot 100】46. 全排列,以及回溯算法

请添加图片描述

  • 🙋‍♂️ 作者:海码007
  • 📜 专栏:算法专栏
  • 💥 标题:【Hot 100】46. 全排列
  • ❣️ 寄语:书到用时方恨少,事非经过不知难!

引言

今天开始回溯算法篇章,首先总结一下回溯算法的核心思想和解决的问题类型。然后再写全排列的算法求解。

回溯算法

回溯算法的核心思想

回溯算法是一种通过 递归试探撤销选择(回退) 来搜索所有可能解的暴力穷举算法。其核心思想是:

  1. 逐步构建候选解:每一步选择一个可能的路径,进入下一层决策。
  2. 约束条件剪枝:如果当前路径不满足条件(如冲突、越界),则立即回溯,不再继续搜索。
  3. 撤销选择:当发现当前路径无法得到解时,回退到上一步,尝试其他选项。

关键特点

  • 递归实现(隐式调用栈)或迭代实现(显式栈)。
  • 通过剪枝(Pruning)减少无效搜索,提高效率。

回溯算法解决的问题类型

回溯通常用于解决以下问题:

  1. 组合问题

    • 问题描述:从一组元素中找出满足条件的组合(不考虑顺序)。
    • 示例:
  2. 排列问题

  3. 子集问题

    • 问题描述:找出集合的所有子集(包括空集)。
    • 示例:
  4. 棋盘/路径问题

  5. 分割问题

    • 问题描述:将字符串或数组分割为满足条件的子部分。
    • 示例:

回溯算法的通用模板(递归实现)

void backtrack(路径, 选择列表, 结果集) {
    if (满足结束条件) {
        结果集.add(路径);
        return;
    }
    for (选择 : 选择列表) {
        if (不满足约束条件) continue; // 剪枝
        做选择;      // 将选择加入路径
        backtrack(路径, 新选择列表, 结果集); // 递归
        撤销选择;    // 回溯,恢复状态
    }
}

回溯 vs. 动态规划(DP)

特性回溯算法动态规划
适用问题求所有解、组合/排列问题求最优解、计数问题
时间复杂度通常指数级(如 O(2^n)通常多项式级(如 O(n^2))
空间复杂度取决于递归深度(O(n))通常需要 DP 表(O(n) 或 O(n^2))
是否记录中间状态不记录,重复计算可能发生记录子问题结果,避免重复计算

优化回溯的方法

  1. 剪枝(Pruning):提前跳过不符合条件的分支(如组合总和问题中排序后提前终止)。
  2. 记忆化搜索:结合哈希表记录中间状态,避免重复计算(如含重复元素的排列问题)。
  3. 迭代实现:用显式栈替代递归,防止栈溢出(如 DFS 的非递归写法)。

总结

回溯算法是解决 组合、排列、子集、棋盘类问题 的利器,通过递归和剪枝平衡穷举与效率。掌握其模板和适用场景后,可灵活应对大多数暴力搜索问题。


全排列

  • 🎈 题目链接:
  • 🎈 做题状态:

我的解题

基本思路:将全排列问题抽象为一颗决策树,第一层选择一个数字,第二层选择第二个数字,直到当前路径长度等于 nums.size() 就可以退出函数。为了记录哪些元素被选择过,还需要使用一个额外的空间来记录。

class Solution {
public:
    // 回溯全排列
    void tracback(vector<vector<int>>& res, vector<int>& path, vector<int>& nums, vector<bool>& used)
    {
        // 终止条件
        if (path.size() == nums.size())
        {
            res.push_back(path);
            return;
        }

        // 遍历当前层
        for (int i = 0; i < nums.size(); ++i)
        {
            // 判断当前元素是否使用过,如果使用过就跳过
            if (used[i]) continue;
            path.push_back(nums[i]);
            used[i] = true;
            tracback(res, path, nums, used);
            path.pop_back();
            used[i] = false;
        }

    }

    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> res;
        vector<int> path;
        vector<bool> used(nums.size(), false);
        tracback(res, path, nums, used);

        return res;
    }
};

代码优化

✅ 优点分析:

  1. 代码结构清晰permute() 是主函数,tracback() 是递归函数,职责分明。
  2. 逻辑严谨:通过 used 数组判断元素是否使用,避免重复选取。
  3. 剪枝到位if (used[i]) continue; 是标准的剪枝方式。
  4. 回溯操作规范:先选择、再递归、再撤销选择。

🧠 可优化/改进建议:

1. ✅ 拼写错误(小问题)

函数名 tracback 建议改成 backtrack,拼写更规范,便于阅读。

// void tracback(...) → void backtrack(...)

2. ✅ 函数传参优化

你现在传的是 vector<int>& nums,这个本身已经是引用了,但因为函数中不修改 nums,你可以改为 const vector<int>& nums,表达不修改数据的意图,增强可读性:

void backtrack(vector<vector<int>>& res, vector<int>& path, const vector<int>& nums, vector<bool>& used)

3. ✅ 使用 emplace_back 替换 push_back(略微提升性能)

在 C++ 中,emplace_back() 可以避免不必要的复制构造。

path.emplace_back(nums[i]);
// 和
res.emplace_back(path);

4. ✅ 减少不必要的传值

虽然 STL 中传引用性能很好,但 vector<vector<int>> &res 其实可以考虑在递归时省略传入(作为类成员变量),不过这属于风格偏好,在刷题中不是必须优化。


🔍 完整优化后的代码(含命名修改):

class Solution {
public:
    void backtrack(vector<vector<int>>& res, vector<int>& path, const vector<int>& nums, vector<bool>& used) {
        if (path.size() == nums.size()) {
            res.emplace_back(path);
            return;
        }

        for (int i = 0; i < nums.size(); ++i) {
            if (used[i]) continue;
            path.emplace_back(nums[i]);
            used[i] = true;
            backtrack(res, path, nums, used);
            path.pop_back();
            used[i] = false;
        }
    }

    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> res;
        vector<int> path;
        vector<bool> used(nums.size(), false);
        backtrack(res, path, nums, used);
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值