题意: 给你一个全排列,要你求这个序列的所有区间的第k大的和
题解:对于每个数字计算贡献值,对于a[i],求区间中第k大的数字是a[i]的数量。
那么我们就需要维护a[i]左边和右边的k个比a[i]大的数字的下标。
这时候需要用到set来找左右边第一个比a[i]大的数字下标,然后用链表连起来。我们从小到大遍历,那么对于当前数字只需要找一次左右边比a[i]大的数字。
ps:直接用set里面的迭代器++和–会超时,因为遍历的复杂度是log(n)的。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <stack>
#include <bitset>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <algorithm>
using namespace std;
#define clr(a,b) memset(a,b,sizeof(a))
#define pb(a) push_back(a)
#define fir first
#define se second
#define LL long long
typedef pair<int,int> pii;
typedef pair<LL,int> pli;
typedef pair<LL,LL> pll;
const LL inf = 0x3f3f3f3f3f3f3f3f;
const int maxn = 5e5+5;
LL mod = 1e9+7;
double eps = 0.00000001;
double PI = acos(-1);
int a[maxn],p[maxn];
int pre[85],rpre[85],L[maxn],R[maxn];
//pre-右区间比它大的数字,rpre-左区间比它大的数字,L和R是模拟链表
int main() {
int t;
scanf("%d", &t);
while(t--) {
set<int> q;
int n,k;
scanf("%d%d",&n,&k);
for(int i = 1;i <= n;i++) {
scanf("%d",&a[i]);
p[a[i]] = i;
}
set<int>::iterator it,it1;
LL ans = 0;
for(int i = n;i >= 1;i--) {
it = q.upper_bound(p[i]);
it1 = it;
int ff = 1;
pre[0] = p[i];
if(it != q.end()) {
R[p[i]] = *it;
L[*it] = p[i];
}
else R[p[i]] = -1;
if(i < n && it1 != q.begin()) {
it1--;
L[p[i]] = *it1;
R[*it1] = p[i];
}
else L[p[i]] = -1;
int c1 = 0,c2 = 0;
pre[0] = rpre[0] = p[i];
for(int j = p[i],l = 1;l <= k && L[j] != -1;j = L[j],++l){
rpre[++c1] = L[j];
}
rpre[++c1] = 0;
for(int j = p[i],l = 1;l <= k && R[j] != -1;j = R[j],++l){
pre[++c2] = R[j];
}
pre[++c2] = n+1;
for(int j = 0;j < k;j++) {
if(j >= c2 || k-j-1 >= c1) continue;
int it = k - j - 1;
ans += ((LL)i * (LL)(pre[j+1]-pre[j]) * (LL)(rpre[it]-rpre[it+1]));
}
q.insert(p[i]);
}
printf("%I64d\n",ans);
}
}