2017 Multi-University Training Contest - Team 3 1003(hdu 6058) Kanade's sum(链表)(set)

本文介绍了一种求解全排列序列中所有区间第K大元素之和的问题算法。通过计算每个数字对答案的贡献值,并使用set和链表来维护左右边界中前K个较大值的下标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意: 给你一个全排列,要你求这个序列的所有区间的第k大的和

题解:对于每个数字计算贡献值,对于a[i],求区间中第k大的数字是a[i]的数量。
那么我们就需要维护a[i]左边和右边的k个比a[i]大的数字的下标。
这时候需要用到set来找左右边第一个比a[i]大的数字下标,然后用链表连起来。我们从小到大遍历,那么对于当前数字只需要找一次左右边比a[i]大的数字。
ps:直接用set里面的迭代器++和–会超时,因为遍历的复杂度是log(n)的。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <stack>
#include <bitset>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <algorithm>
using namespace std;
#define clr(a,b) memset(a,b,sizeof(a))
#define pb(a) push_back(a)
#define fir first
#define se second
#define LL long long
typedef pair<int,int> pii;
typedef pair<LL,int> pli;
typedef pair<LL,LL> pll;
const LL inf = 0x3f3f3f3f3f3f3f3f;
const int maxn = 5e5+5;
LL mod = 1e9+7;
double eps = 0.00000001;
double PI = acos(-1);

int a[maxn],p[maxn];
int pre[85],rpre[85],L[maxn],R[maxn];
//pre-右区间比它大的数字,rpre-左区间比它大的数字,L和R是模拟链表
int main() {
    int t;
    scanf("%d", &t);
    while(t--) {
        set<int> q;
        int n,k;
        scanf("%d%d",&n,&k);
        for(int i = 1;i <= n;i++) {
            scanf("%d",&a[i]);
            p[a[i]] = i;
        }
        set<int>::iterator it,it1;
        LL ans = 0;
        for(int i = n;i >= 1;i--) {
            it = q.upper_bound(p[i]);
            it1 = it;
            int ff = 1;
            pre[0] = p[i];
            if(it != q.end()) {
                R[p[i]] = *it;
                L[*it] = p[i];
            }
            else R[p[i]] = -1;
            if(i < n && it1 != q.begin()) {
                it1--;
                L[p[i]] = *it1;
                R[*it1] = p[i];
            }
            else L[p[i]] = -1;

            int c1 = 0,c2 = 0;
            pre[0] = rpre[0] = p[i];
            for(int j = p[i],l = 1;l <= k && L[j] != -1;j = L[j],++l){
                rpre[++c1] = L[j];
            }
            rpre[++c1] = 0;
            for(int j = p[i],l = 1;l <= k && R[j] != -1;j = R[j],++l){
                pre[++c2] = R[j];
            }
            pre[++c2] = n+1;

            for(int j = 0;j < k;j++) {
                if(j >= c2 || k-j-1 >= c1) continue;
                int it = k - j - 1;
                ans += ((LL)i * (LL)(pre[j+1]-pre[j]) * (LL)(rpre[it]-rpre[it+1]));
            }
            q.insert(p[i]);
        }
        printf("%I64d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值