pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

本文详细介绍了pandas DataFrame中的查询方法,包括[]切片,loc按索引选择,iloc按位置选择,at和iat用于快速访问单个元素,以及ix混合查询。建议在数据操作中优先使用loc,以避免chained indexing问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据介绍

先随机生成一组数据:

import pandas as pd
import numpy as np

state = ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada']
year = [2000, 2001, 2002, 2003, 2004]
pop = [1.3, 1.4, 1.6, 4.5, 2.7]
frame = pd.DataFrame({'state': state, 'year': year, 'pop': pop})
print(frame)

 结果:

   pop   state  year
0  1.3    Ohio  2000
1  1.4    Ohio  2001
2  1.6    Ohio  2002
3  4.5  Nevada  2003
4  2.7  Nevada  2004

1. []切片方法

# 行选择
print(frame[1:3])

# 列选择
print(frame[['year', 'pop']])

# 区块选择
print(frame[:3][['state', 'year']])
</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值