BZOJ2286 [Sdoi2011]消耗战 (虚树 + 树形DP)

本文介绍了一种解决特定图论问题的方法——利用树形动态规划(Tree DP)及虚树构建技巧来求解最小花费的问题。适用于多组询问且关键点数量总和不超过一定阈值的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:

如果是一组询问,很明显可以树形 dp d p ,假设以 u u 为根的子树要断开所有关键点的路径所需要的最小花费, 可以找到状态转移方程:
       dp[u]={min_cost(u,son),sonmin(min_cost(u,son),dp[son])son d p [ u ] = ∑ { m i n _ c o s t ( u , s o n ) , s o n 是 关 键 点 m i n ( m i n _ c o s t ( u , s o n ) , d p [ s o n ] ) , s o n 不 是 关 键 点
但是现在是多组询问, 有个关键的就是 ki5e5 ∑ k i ⩽ 5 e 5 , 也就是说如果在每组询问中, 能够单独对这些关键点做树形 dp d p 也是可以的,这也就是去除无用点依然能保持原树的形态,然后就是构建虚树, 虚树就是在原树去除若干的无用点,只保留一些关键点,那些无用点不影响答案,然后对关键点做树形 dp d p 就行了。
                                  关于虚树的构建参考:虚树学习笔记
   

#include<bits/stdc++.h>
typedef long long ll;
const int maxn = 2e5 + + 5e4 + 100;
const int INF = 1e9 + 10;
using namespace std;

typedef pair<int, int> pa;
int n, m, T, kase = 1;
vector<pa> G[maxn], g[maxn];
int stk[maxn * 2], deep[maxn];
int anc[maxn][19], cost[maxn][19];
int dfn[maxn], num, vis[maxn];
ll dp[maxn];

void dfs(int x, int fa, int c, int d) {
    deep[x] = d; anc[x][0] = fa;
    dfn[x] = num++; cost[x][0] = c;
    for(int i = 1; i < 19; i++) {
        int t = anc[x][i - 1];
        if(t == -1) break;
        anc[x][i] = anc[t][i - 1];
        cost[x][i] = min(cost[x][i - 1], cost[t][i - 1]);
    }
    for(int i = 0; i < G[x].size(); i++) {
        int v = G[x][i].first, w = G[x][i].second;
        if(v == fa) continue;
        dfs(v, x, w, d + 1);
    }
}

int min_xy, vec[maxn * 4];
int query_anc(int x, int y) {
    min_xy = INF;
    if(deep[x] > deep[y]) swap(x, y);
    int lg = 0; while((1 << lg) <= deep[y]) lg++; lg--;
    for(int i = lg; i >= 0; i--) {
        if(deep[y] - deep[x] < (1 << i)) continue;
        min_xy = min(min_xy, cost[y][i]); y = anc[y][i];
    }
    if(y == x) return x;
    for(int i = lg; i >= 0; i--) {
        int px = anc[x][i], py = anc[y][i];
        if(px == py) continue;
        min_xy = min(min_xy, min(cost[x][i], cost[y][i]));
        x = px; y = py;
    }
    min_xy = min(min_xy, min(cost[x][0], cost[y][0]));
    return anc[x][0];
}

bool cmp(int x, int y) { return dfn[x] < dfn[y]; }  ///关键点按照dfs序排序

void add_edge(int x, int y) {
    min_xy = INF; query_anc(x, y);
    g[x].push_back(pa(y, min_xy));
    g[y].push_back(pa(x, min_xy));
}

void build_virtual_tree(int sz, int &cnt) {
    sort(vec, vec + sz, cmp);
    int tot = 0; stk[tot++] = 0;
    for(int i = 0; i < sz; i++) {
        int x = vec[i], lca = query_anc(x, stk[tot - 1]);
        vis[x] = 1;
        if(lca == stk[tot - 1]) stk[tot++] = x;
        else {
            while(tot - 2 >= 0 && deep[stk[tot - 2]] >= deep[lca]) {
                int u = stk[tot - 1], v = stk[tot - 2];
                add_edge(u, v); tot--;
            }
            if(stk[tot - 1] != lca) {
                int u = stk[tot - 1]; tot--;
                add_edge(u, lca);
                stk[tot++] = lca; vec[cnt++] = lca;
            }
            stk[tot++] = x;
        }
    }
    for(int i = 0; i < tot - 1; i++) {
        int u = stk[i], v = stk[i + 1];
        add_edge(u, v); vec[cnt++] = stk[i];
    }
    vec[cnt++] = stk[tot - 1];
}

ll solve(int x, int fa) {
    if(g[x].size() == 1) { dp[x] = INF; return dp[x]; }
    ll tot_cost = 0;
    for(int i = 0; i < g[x].size(); i++) {
        int v = g[x][i].first;
        if(v == fa || !v) continue;
        solve(v, x);
        min_xy = INF; query_anc(x, v);
        if(vis[v]) tot_cost += min_xy;
        else tot_cost += min((ll)min_xy, dp[v]);
    }
    return dp[x] = tot_cost;
}

int main() {
    while(scanf("%d", &n) != EOF) {
        memset(anc, -1, sizeof anc); num = 0;
        memset(vis, 0, sizeof vis);
        for(int i = 0; i < maxn; i++) {
            G[i].clear(); g[i].clear();
        }
        for(int i = 1; i < n; i++) {
            int u, v, c;
            scanf("%d %d %d", &u, &v, &c);
            G[u].push_back(pa(v, c));
            G[v].push_back(pa(u, c));
        }
        dfs(1, 0, 0, 1);
        int lca = query_anc(1, 6);
        scanf("%d", &m);
        while(m--) {
            int cnt; scanf("%d", &cnt);
            for(int i = 0; i < cnt; i++)
                scanf("%d", &vec[i]);
            vec[cnt++] = 1;
            build_virtual_tree(cnt, cnt);
            g[0].clear();
            ll ans = solve(1, 0);
            for(int i = 0; i < cnt; i++) { g[vec[i]].clear(); vis[vec[i]] = 0; }
            printf("%lld\n", ans);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值