8.3 单位矩阵和逆矩阵

  线性代数提供了被称为逆矩阵(matrix inversion)的强大工具。对于大多数矩阵A,我们都能通过矩阵逆解析地求解式Ax=b

8.3.1 单位矩阵

  为了描述矩阵逆,首先需要定义单位矩阵(identity matrix)的概念。任意向量和单位矩阵相乘,都不会改变。我们将保持n维向量不变的单位矩阵记作In。形式上,InRn×n

xRn,Inx=x(8.20)

  单位矩阵的结构很简单:
  1. 它是“正方形”(行数与列数相同)
  2. 所有沿主对角线的元素都是1,而所有其他位置的元素都是0

100010001

8.3.2 逆矩阵概念

  矩阵A的逆矩阵(matrix inversion)记作A1,其定义的矩阵满足如下条件:

A1A=In(8.21)

  其实矩阵的逆矩阵跟倒数的性质一样,不过只是我们习惯用A1表示。而倒数可以表示成1/x或者x1的形式,而不能把A的逆矩阵写成1/A的形式,其主要原因是矩阵不能被除。
  为了理解矩阵的逆,其和倒数还有其他相似之处:
  • 当我们将一个数乘以它的倒数我们得11×(1/8)=1
  • 当一个矩阵乘以逆时,我们得到了单位矩阵。A×A1=I
  • 矩阵与逆矩阵乘法与数乘一样,交换位置结果不变(1/8)×8=1,即乘法满足交换律A1×A=I

8.3.3 行列式和求解逆矩阵

  以二维矩阵为例,其逆矩阵求解公式如下:

[acbd]1=1adbc[dcba]

  换句话说:交换a和b的位置,将负数置于b和c的前面,并将所有元素除以行列式(ad-bc)。由于0不能为除数,因此判断一个矩阵是否为逆的要条件就是行列式是否为0。矩阵的行列式计为det(determinatnt的缩写),其意义就是决定因子,即决定逆矩阵是否存在。
det[acbd]0[acbd]1

  例题:

求解逆矩阵例题
  利用逆矩阵的概念逆推,即将矩阵乘以逆矩阵,最终求得单位矩阵。

矩阵乘以逆矩阵

8.3.4 求解矩阵方程

  矩阵中没有被除的概念,而矩阵的逆,可以解决“矩阵除法”的问题。假如我们没有“除法”规则,那么解决“把10个苹果分给两个人”的问题,可以采取2的倒数(12=0.5)来计算,那么答案就是10×0.5=5,也就是每个人5个苹果。
  我们也可以利用以上方法,已知矩阵A和矩阵B,求解矩阵X。即XA=B。最好的方法是直接除以A,得到X=B/A,但事实上我们不能直接除以A。但我们可以在公式两边都乘以A1。即XAA1=BA1
  因为AA1=I,所以就得到XI=BA1。而此时单位矩阵I可以直接去掉,于是求得X=BA1。因此通过A1,就可以直接计算出矩阵X

例题:
有一个几个家庭组团出去旅行,出发的时候是乘坐大巴,每位儿童3元,每个大人3.2元,一共花费了118.4元。在回程时,他们选择乘坐火车,每名儿童3.5元,每名成人3.6元,总计135.20元。求解有多少儿童和大人?

  我们尝试用矩阵思维来解答,首先设置好矩阵(注意矩阵的行和列是否正确):

矩阵方程

  然后求解A的逆矩阵:

求解逆矩阵

  根据公式X=BA1,求解X

求解矩阵方程

  根据求解所得,一共有16个儿童和22个大人。这样的计算其实非常有利于工程师设计建筑物,视频游戏和计算机动画等许多地方,它是解线性方程组的一种解法。虽然是求矩阵的逆,只要打开Python工具的NumPy库,输入numpy.inv(A),即可求得A的逆矩阵。虽然这个过程是由计算机完成,但我们还是有必要去了解公式,因为这正是数学的美妙之处。

### 使用 ARM Neon 加速矩阵求逆 #### 1. 矩阵求逆简介 矩阵求逆是一个计算密集型的操作,在许多科学计算工程应用中非常重要。对于大型矩阵而言,直接使用浮点运算可能会非常耗时。通过利用 ARM Neon 提供的 SIMD (Single Instruction Multiple Data) 功能可以显著提高这一过程效率。 #### 2. 初步准备 为了有效地运用 Neon 来加速矩阵求逆算法,需要先理解目标平台的具体架构特性以及所支持的数据类型[^3]。通常情况下,会优先选用适合并行处理的数据布局方式来存储输入输出数据。 #### 3. 实现思路概述 一种常见的方法是采用 LU 分解法来进行矩阵求逆。LU 分解能够将原始矩阵分解成两个三角形矩阵 L U 的乘积形式,从而简化后续求解步骤。在此基础上再结合 Neon intrinsic 函数完成核心部分的向量化操作: - **加载与预处理**: 将待处理的数据从内存高效地载入到寄存器组内; - **SIMD 计算**: 应用 Neon intrinsics 执行大规模相似类型的加减乘除运算; - **结果回写**: 处理完成后把最终得到的结果重新放回到外部存储空间里去; #### 4. 示例代码展示 下面给出一段基于 C++ 编写的简单示例程序片段用于说明如何借助于 Neon intrinsics 完成上述提到的部分工作流程: ```cpp #include <arm_neon.h> // ...其他必要的头文件... void lu_decomposition(float* A, int n){ float32x4_t vzero = vmovq_n_f32(0); for(int k=0; k<n; ++k){ // 获取第K列元素作为临时变量保存起来 float32x4_t vk = vld1q_f32(&A[k*n+k]); // 对角线位置设置为1 vk = vsetq_lane_f32(1.f, vk, k%4); // 更新下三角区域内的值 for(int i=k+1;i<n;++i){ float ai_k = A[i*n + k]; // 如果当前行为零则跳过该轮迭代 if(ai_k == 0.) continue; // 向量化的更新公式:ai_j -= ak_j * ai_k / ak_k; for(int j=k;j<(n/4)*4;j+=4){ float32x4_t aj = vld1q_f32(&A[i*n+j]); float32x4_t kj = vmulq_n_f32(vld1q_f32(&A[k*n+j]), ai_k/A[k*n+k]); aj = vsubq_f32(aj,kj); vst1q_f32(&A[i*n+j],aj); } } // 特殊情况下的单独处理... } } ``` 这段代码展示了如何使用 `vmulq_n_f32`、`vaddq_f32` 等函数来进行批量浮点数相乘累加操作,以此达到加快速度的目的。需要注意的是这只是一个简化的例子,并未完全覆盖所有边界条件检查逻辑。 #### 5. 性能优化建议 当尝试进一步提升性能时可以从以下几个角度入手: - 数据局部性优化:合理安排数组访问顺序减少缓存缺失次数; - 循环展开技术:适当增加每次循环体内执行的工作量降低控制开销比例; - 平衡负载分配:确保多核环境下各 CPU 核心间任务分派均匀避免资源争抢现象发生;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值