10.2 香农熵、相对熵(KL散度)与交叉熵

本文介绍了信息熵的概念,它是衡量系统无序程度的一种度量。对于随机变量,信息熵越低表明系统越有序;同时文章还介绍了相对熵,即Kullback-Leibler散度,用于衡量两个随机变量之间的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

香农熵(Shannon entropy)

信息熵(又叫香农熵)反映了一个系统的无序化(有序化)程度,一个系统越有序,信息熵就越低,反之就越高。
如果一个随机变量X的可能取值为X={x1,x2,,xn},对应的概率为p(X=xi),则随机变量X的信息熵为:

H(X)=i=1np(xi)logp(xi)

相对熵(relative entropy)

所谓相对,自然在两个随机变量之间,又称互熵,Kullback–Leibler divergence(K-L 散度)等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值