[模型部署] 算子等价替换

文章讨论了如何在PyTorch中用卷积操作实现ReduceMean和ReduceSum的效果。对于形状为[1,48,56,56]的张量,通过对2和3维度进行ReduceMean,可以使用特定大小的卷积核和合适的padding达到相同结果。同样,ReduceSum也可以通过类似的方法实现。给出了具体的代码示例进行演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[模型部署] 算子等价替换

ReduceMean

在PyTorch中可用torch.mean表示,该算子可被卷积等价替换;
存在输入张量的形状为[1,48,56,56],对其2,3维度进行ReduceMean,形状变为[1,48,1,1],可用特征图大小的卷积核,padding为0,stride设置为1或56,均可

代码如下:

import torch
a = torch.randn(1, 48, 56, 56)
conv = torch.nn.Conv2d(in_channels=48, out_channels=48, 
		kernel_size=(56, 56), stride=(1, 1), padding=(0, 0), groups=48, bias=False)
weight = torch.ones(48, 1, 56, 56) / (56 * 56)
conv.weight = torch.nn.parameter.Parameter(weight)
b = conv(a)
c = torch.mean(a, dim=(2, 3), keepdim=True)
print(b.detach().numpy().flatten())
print(c.detach().numpy().flatten())

ReduceSum

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

上单之光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值