Python 装饰器详解

日常使用 Python,装饰器使用的几率很多,那到底什么是装饰器呢?它又有哪些用处呢?

下面将逐一来说明

1. 什么是装饰器

装饰器(Decorator)是Python 中一种强大的语法特性,它允许在不修改原函数代码的情况下,动态地增强函数的功能。

实际上,装饰器本质上是一个高阶函数,它可以接收一个函数作为参数并返回一个新的函数。

def decorator(func):
    def wrapper():
        print("Before function execution")
        func()
        print("After function execution")
    return wrapper

2. 装饰器的基本用法

使用 @ 符号来应用装饰器:

@decorator
def say_hello():
    print("Hello!")

say_hello()

输出结果:

Before function execution
Hello!
After function execution

3. 装饰器的常见应用场景

3.1 日志记录

def log_execution(func):
    def wrapper(*args, **kwargs):
        print(f"Executing {func.__name__}...")
        result = func(*args, **kwargs)
        print(f"Finished executing {func.__name__}")
        return result
    return wrapper

3.2 性能测试

import time

def time_it(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        result = func(*args, **kwargs)
        end = time.time()
        print(f"{func.__name__} executed in {end-start:.4f} seconds")
        return result
    return wrapper

3.3 权限验证

def require_login(func):
    def wrapper(user, *args, **kwargs):
        if not user.is_authenticated:
            raise PermissionError("User must be logged in")
        return func(user, *args, **kwargs)
    return wrapper

4. 带参数的装饰器

装饰器本身也可以接受参数:

def repeat(n):
    defdecorator(func):
        defwrapper(*args, **kwargs):
            for _ inrange(n):
                result = func(*args,**kwargs)
            return result
        return wrapper
    return decorator

@repeat(3)
defgreet(name):
    print(f"Hello {name}")

greet("Alice")

5. 类装饰器

除了函数装饰器,Python 还支持类装饰器:

class CountCalls:
    def__init__(self, func):
        self.func = func
        self.calls = 0

    def__call__(self, *args, **kwargs):
        self.calls += 1
        print(f"Call {self.calls} of {self.func.__name__}")
        returnself.func(*args, **kwargs)

@CountCalls
defexample():
    print("Inside example function")

6. 保留函数元信息

针对一个函数利用装饰器后,原函数的元信息会被替换,我们可以使用 functools.wraps 来保留函数元信息

from functools import wraps

def preserve_metadata(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        """Wrapper function docstring"""
        return func(*args, **kwargs)
    return wrapper

7. 装饰器的执行顺序

装饰器可以堆叠使用,执行顺序是从下往上:

@decorator1
@decorator2
@decorator3
def my_function():
    pass

# 等效于:
my_function = decorator1(decorator2(decorator3(my_function)))

8. 实际应用示例

from functools import wraps
import time

defcache(max_size=100):
    defdecorator(func):
        cache_dict = {}
        
        @wraps(func)
        defwrapper(*args):
            if args in cache_dict:
                return cache_dict[args]
            
            result = func(*args)
            
            iflen(cache_dict) >= max_size:
                cache_dict.popitem()
                
            cache_dict[args] = result
            return result
        return wrapper
    return decorator

@time_it
@cache
deffibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

9. 总结

最后总结一下 Python 装饰器的特征及用途

  • • 装饰器是 Python 中的高级特性,用于增强函数功能

  • • 使用 @decorator 语法糖来简化操作

  • • 可以接受参数,也可以多个装饰器一起使用

  • • 类也可以作为装饰器

  • • 可以使用 functools.wraps 保留原函数元信息

  • • 装饰器常用于日志、缓存、权限验证等场景

总之,装饰器可以让 Python 代码更加优雅并且可维护,是每个Python 开发者都应该掌握的重要技能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值