使用 WebFlux 和 LangChain4j 的架构

一、JVM 参数调优(关键)

启动时添加参数(示例)

java -XX:+UseZGC
-Xms256m -Xmx512m
-XX:MaxMetaspaceSize=128m
-XX:NativeMemoryTracking=summary
-XX:+AlwaysPreTouch
-jar your-app.jar
参数说明:
-XX:+UseZGC:低延迟垃圾收集器(适合响应式应用)
-Xms256m -Xmx512m:堆内存初始/最大值(根据监控数据调整)
-XX:MaxMetaspaceSize=128m:限制元空间内存泄漏
二、响应式编程优化
背压控制(防止内存溢出)
Flux chatStream = assistant.chat(sessionId, message)
.limitRate(100) // 限制每批次处理量
.onBackpressureBuffer(500); // 设置缓冲区上限
内存敏感操作符
// 在 LangChain4j 流处理中使用
.windowTimeout(50, Duration.ofMillis(100)) // 按数量/时间分窗
.flatMapSequential(this::processChunk, 5) // 控制并发度
三、LangChain4j 专项优化
模型加载策略

application.yml

langchain4j:
chat-model:
qwen:
max-retries: 2 # 减少重试内存占用
log-requests: false # 关闭请求日志
temperature: 0.7 # 降低随机性可减少计算资源
向量存储优化
@Bean
public ContentRetriever contentRetrieverPinecone() {
return EmbeddingStoreContentRetriever.builder()
.maxResults(20) // 限制召回结果数量
.minScore(0.6) // 过滤低质量结果
.build();
}
四、依赖项瘦身

org.springframework.boot spring-boot-starter-data-mongodb org.mongodb mongodb-driver-core com.jsoniter jsoniter 0.9.23 五、内存监控配置 Actuator 端点 management: endpoints: web: exposure: include: health,metrics,memory metrics: export: prometheus: enabled: true Native Memory Tracking jcmd VM.native_memory summary 六、缓存策略优化 @Configuration @EnableCaching public class CacheConfig {
@Bean
public Caffeine<Object, Object> caffeineConfig() {
    return Caffeine.newBuilder()
        .maximumSize(500) // 严格控制缓存条目
        .expireAfterWrite(5, TimeUnit.MINUTES)
        .softValues(); // 使用软引用缓存
}

}
七、类加载优化
@SpringBootApplication
public class Application {

public static void main(String[] args) {
    new SpringApplicationBuilder(Application.class)
        .lazyInitialization(true) // 启用懒加载
        .run(args);
}

}
八、容器化优化(如需部署)
FROM eclipse-temurin:21-jre-alpine

RUN apk add --no-cache musl-locales

VOLUME /tmp
ARG JAR_FILE=target/*.jar
COPY ${JAR_FILE} app.jar

ENTRYPOINT [“java”,
“-XX:MaxRAMPercentage=75.0”,
“-XX:+UseContainerSupport”,
“-jar”,“/app.jar”]
优化效果验证:
使用 jconsole 观察堆内存变化
通过 /actuator/metrics/jvm.memory.used 监控实时内存
使用 async-profiler 生成火焰图定位热点
针对 AI 服务的特别建议:
// 在 Assistant 接口添加内存敏感注解
@AiService(/原有配置/)
public interface Assistant {

@SystemMessage(fromResource = "agent-prompt.txt")
@UserMessage(maxTokens = 500) // 限制生成长度
Flux<String> chat(@MemoryId String memoryId, 
                 @UserMessage String userMessage);

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值