[LeetCode]032-Longest Valid Parentheses

本文探讨了LeetCode中的一道题目——找到给定字符串中由'('和')'组成的最长有效(合法)括号子串。通过动态规划的方法,从后往前遍历,当遇到'('时尝试匹配后面的')',从而计算出最长子串的长度。例如,'(()'的最长有效括号子串是'()',长度为2,而')()())'的最长有效括号子串是'()()',长度为4。" 108939727,8688150,Istio 故障注入实战:延迟与中止,"['服务网格', 'Istio故障注入', '网络故障模拟', '应用程序故障', 'API管理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
Given a string containing just the characters ‘(’ and ‘)’, find the length of the longest valid (well-formed) parentheses substring.

For “(()”, the longest valid parentheses substring is “()”, which has length = 2.

Another example is “)()())”, where the longest valid parentheses substring is “()()”, which has length = 4.

Solution:
思路,采用动态规划来做。字符串长度为length
假设dp[i]是从i下标到length-1(最后)的最长连续合法子串。
从length-2开始算起,从后往前。dp[length-1] = 0。

现在假设一个情境计算dp[i]。
1、如果dp[i] = ‘)’。没必要计算了,后面肯定没有匹配的。
2、如果dp[i] = ‘(‘。那就要计算了,首先往后移dp[i+1](可能为0)个位置,到j = i + dp[i+1] +1这个下标。然后比较dp[j]是否为’)’。如果是则匹配成功,dp[i] = dp[i+1] + 2。要满足j

int longestValidParentheses(string s) 
    {
        int n = s.size();
        int* dp = new int[n];
        int maxlength = 0;
        memset(dp,0,sizeof(int)*n);

        for(int i = n-2;i>=0;i--)
        {
            if(s[i] == '(')
            {
                int j = i+dp[i+1]+1;
                if( j < n && s[j] == ')')
                {
                    dp[i] = dp[i+1] + 2;
                    if(j+1 < n)
                        dp[i] += dp[j+1];
                }
            }
            if(dp[i] >= maxlength)
                maxlength = dp[i];
        }
        return maxlength;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值