Carla从相机拍摄深度图片到深度图转点云

本文介绍了如何调整相机的俯仰、偏航和滚转角度,以及如何将CARLA深度图的编码转换为归一化的深度值,进而生成点云数据。详细步骤包括深度值处理、像素坐标计算和坐标系转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相机的摆放位置涉及到的基础知识:

pitch(俯仰) :绕x轴旋转,正值将相机向上旋转,负值将相机向下旋转。Yaw(偏航):绕y轴旋转,正值将相机向右旋转,负值将相机向左旋转。Row(滚转):绕z轴旋转,正值顺时针旋转,负值逆时针旋转。

将深度相机拍摄得到的深度图的深度值转换为归一化的深度值(Carla的深度图的编码方式就是这样的,转换方法如下):

# 目的是将深度值转换为归一化后的深度值二维数组
def depth_to_array(image):
    """
    Convert an image containing CARLA encoded depth-map to a 2D array containing
    the depth value of each pixel normalized between [0.0, 1.0].
    """
    array = image
    array = array.astype(np.float32)
    # Apply (R * 256 * 256 + G * 256 + B ) / (256 * 256 * 256 - 1).
    normalized_depth = np.dot(array[:, :, :3], [65536.0, 256.0, 1.0])
    normalized_depth /= 16777215.0  # (256.0 * 256.0 * 256.0 - 1.0)
    return normalized_depth

将深度图传入,并把语义分割图传入作为color。 

def depth_to_local_point_cloud(light_id, image, color=None, max_depth=0.1):
    """
    Convert an image containing CARLA encoded depth-map to a 2D array containing
    the 3D position (relative to the camera) of each pixel and its corresponding
    RGB color of an array.
    "max_depth" is used to omit the points that are far enough.
    """
    far = 1000.0  # max depth in meters.
    fov=90
    normalized_depth = depth_to_array(image)
    img_width=800
    img_height=600

    # 计算相机内参矩阵K
    k = np.identity(3)
    k[0, 2] = img_width / 2.0
    k[1, 2] = img_height / 2.0
    k[0, 0] = k[1, 1] = img_width / \
        (2.0 * math.tan(fov * math.pi / 360.0))

    # 计算像素坐标
    pixel_length = img_width * img_height
    # 生成水平方向的像素坐标 u_coord。
    # 使用 np.matlib.repmat 函数将一个水平递减的序列 [img_width-1, img_width-2, ..., 0] 复制成一个大小为 (img_height, img_width) 的矩阵。
    # 然后,使用 reshape 函数将矩阵展平成一维数组,长度为 pixel_length。这样,u_coord 中的每个元素表示对应像素的水平坐标。
    u_coord = np.matlib.repmat(np.r_[img_width-1:-1:-1],
                     img_height, 1).reshape(pixel_length)
    v_coord = np.matlib.repmat(np.c_[img_height-1:-1:-1],
                     1, img_width).reshape(pixel_length)
    if color is not None:
        print("color.shape",len(color)) # color.shape = 600
        color = color.reshape(pixel_length, 3)
    print("normalized depth before reshape", normalized_depth.shape) #(600,800)
    normalized_depth = np.reshape(normalized_depth, pixel_length)
    print("normalized depth after reshape",normalized_depth.shape) # (480000,)
    
    # 将深度值大于max_depth的像素删除掉
    max_depth_indexes = np.where(normalized_depth > max_depth)
    normalized_depth = np.delete(normalized_depth, max_depth_indexes)
    u_coord = np.delete(u_coord, max_depth_indexes)
    v_coord = np.delete(v_coord, max_depth_indexes)
    if color is not None:
        color = np.delete(color, max_depth_indexes, axis=0)
    # pd2 = [u,v,1]
    p2d = np.array([u_coord, v_coord, np.ones_like(u_coord)])

    # P = [X,Y,Z]
    # 应为内参K是相机坐标系到像素坐标系的,所以要从像素到相机,需要乘内参的逆矩阵。
    p3d = np.dot(np.linalg.inv(k), p2d)
    p3d *= normalized_depth * far

    result = o3d.geometry.PointCloud()
    # Formating the output to:
    # [[X1,Y1,Z1,R1,G1,B1],[X2,Y2,Z2,R2,G2,B2], ... [Xn,Yn,Zn,Rn,Gn,Bn]]
    if color is not None:
        points = np.transpose(p3d)
        points = o3d.utility.Vector3dVector(points)
        result.points = points
        result.colors = o3d.utility.Vector3dVector(color)
    else:
        points = np.transpose(p3d)
        points = o3d.utility.Vector3dVector(points)
        result.points = points
    o3d.io.write_point_cloud(os.path.join('junction_images', f"light_{light_id}_ply.ply"),result)
    print("done")

原始的深度图:

 代码转换后的点云:

 

下一篇将介绍坐标系的转换。 

<think>好的,我现在需要帮助用户在ROS中使用Carla生成点云数据。首先,我得回顾一下用户的问题和相关引用内容。用户提到了SceneFlow数据集和Carla Apollo Bridge的引用,但主要问题集中在ROS和Carla点云数据处理上。 首先,Carla模拟器本身支持生成点云数据吗?我记得Carla的传感器中包括激光雷达(LiDAR),所以应该是可以的。用户需要将这些数据在ROS中使用,所以可能需要将Carla的数据通过ROS节点发布出来。 接下来,我需要考虑如何将Carla与ROS连接起来。用户提到Carla Apollo Bridge,但这是用于Apollo和Carla之间的通信,可能不直接支持ROS。不过,或许有其他的桥接工具,比如ROS中的carla-ros-bridge。这个包应该可以将Carla的数据换为ROS话题。 然后,具体到点云数据的处理,用户可能需要安装相关的ROS包,比如carla_ros_bridge,并配置LiDAR传感器。在Carla中添加LiDAR传感器,然后在ROS中订阅对应的点云话题,比如/points。数据格式方面,Carla输出的点云可能需要换成ROS的sensor_msgs/PointCloud2消息类型。 另外,用户可能需要处理数据同步或坐标换的问题,比如使用TF来换坐标系。此外,点云数据可能需要进行滤波或降采样,这时候可以使用PCL库或者ROS中的pointcloud_filter节点。 总结步骤的话,应该是:安装必要的ROS包,配置Carla中的LiDAR传感器,启动ROS桥接节点,然后在ROS中订阅并处理点云数据。同时,可能需要换数据格式或应用滤波算法。 不过,我需要确认这些步骤是否正确。比如,carla-ros-bridge是否确实支持LiDAR数据的传输,以及点云消息的具体话题名称。另外,用户可能需要参考Carla和ROS bridge的官方文档来确保步骤正确。如果有遗漏的部分,比如需要设置特定的参数或配置,也需要在回答中提及。 最后,生成相关问题时,应该围绕Carla与ROS的集成、点云数据处理方法、优化传输性能以及应用场景等方面展开。</think>### 在ROS中使用Carla生成点云数据步骤 #### 1. **安装Carla-ROS-Bridge** Carla官方提供了与ROS集成的开源工具`carla-ros-bridge`,可通过以下步骤安装: ```bash # 创建工作空间并克隆仓库 mkdir -p ~/carla-ros_ws/src cd ~/carla-ros_ws/src git clone https://github.com/carla-simulator/ros-bridge.git cd .. rosdep install --from-paths src --ignore-src -r catkin_make ``` 安装后需配置Carla服务端地址和端口(默认为`localhost:2000`)。 #### 2. **在Carla中添加LiDAR传感器** 通过Carla Python API在车辆上添加LiDAR传感器,并设置参数(如通道数、范围、频率等): ```python # 示例代码片段 lidar_bp = world.get_blueprint_library().find('sensor.lidar.ray_cast') lidar_bp.set_attribute('channels', '32') lidar_bp.set_attribute('range', '5000') lidar_location = carla.Location(0, 0, 2.5) lidar_sensor = world.spawn_actor(lidar_bp, carla.Transform(lidar_location), attach_to=vehicle) ``` #### 3. **通过ROS桥接发布点云数据** `carla-ros-bridge`会自动将Carla的LiDAR数据换为ROS的`sensor_msgs/PointCloud2`消息,并发布到话题`/carla/<ROLE_NAME>/lidar`。例如: ```bash rostopic echo /carla/ego_vehicle/lidar ``` #### 4. **数据处理与可视化** - **订阅话题**:编写ROS节点订阅点云数据,并使用`PCL`库或`rviz`进行可视化: ```python import rospy from sensor_msgs.msg import PointCloud2 def callback(data): rospy.loginfo("Received point cloud data") rospy.init_node('lidar_subscriber') rospy.Subscriber('/carla/ego_vehicle/lidar', PointCloud2, callback) rospy.spin() ``` - **坐标换**:使用`tf2`工具处理坐标系对齐(如从Carla坐标系换到ROS的`map`系): ```xml <!-- 在URDF或TF配置中定义坐标系关系 --> ``` #### 5. **优化与滤波** - **降采样**:使用`pcl::VoxelGrid`滤波降低数据密度。 - **去噪**:应用统计滤波或半径滤波去除离群点。 - **实时性**:调整LiDAR的发布频率(如从10Hz改为5Hz)以减轻计算负载。 #### 注意事项 - Carla与ROS的时间同步需通过`/clock`话题实现,需在启动桥接时启用同步模式。 - 点云数据量较大时,建议使用`ROS`的`compressed_pointcloud`插件进行压缩传输。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值