封闭井筒中井涌运移导致压力积聚的数值研究

封闭井筒中井涌运移导致压力积聚的数值研究

摘要

本研究采用瞬态两相流模型,对水基泥浆体系封闭井筒中气体井涌运移时的压力积聚现象进行了数值模拟。重点分析了气体运移速度对井筒压力动态的影响机制,通过Python编程实现了包含气体滑脱关系的漂移通量模型,系统研究了不同井涌规模下悬浮效应、流态转换区间等因素对压力积聚过程的影响规律,并对数值计算方案的稳定性与准确性进行了验证。

1. 引言

研究背景

钻井作业中的气体井涌若控制不当将引发重大安全风险。当井涌发生并关闭防喷器(BOP)后,运移的天然气会导致井筒压力积聚,严重威胁井筒完整性。准确预测这一压力动态变化对井控作业至关重要。

研究目标

  1. 开发基于Python的瞬态两相流井涌运移数值模型
  2. 解析不同井涌情景下的压力积聚特征
  3. 探究悬浮极限与流态转换的耦合影响机制
  4. 验证数值计算方案的稳定性与精度

2. 研究方法

数学模型

采用质量守恒与动量守恒方程构建控制方程组:

液相质量守恒方程:

∂(α₁ρ₁)/∂t + ∂(α₁ρ₁v₁)/∂z = 0

气相质量守恒方程:

∂(α₉ρ₉)/∂t + ∂(α₉ρ₉v₉)/∂z = 0

混合相动量守恒方程:

∂(α₁ρ₁v₁ + α₉ρ₉v₉)/∂t + ∂(α₁ρ₁v₁² + α₉ρ₉v₉² + p)/∂z = -(F_w + ρ_mix g cosθ)

Python数值实现

核心算法采用面向对象编程实现:

import numpy as np
from scipy.optimize import bisect
import matplotlib.pyplot as plt

class WellSimulation:
    def __init__(self, welldepth=4000, nobox=50, dt=0.01):
        self.welldepth = welldepth  # 井深(m)
        self.nobox = nobox          # 网格单元数
        self.dt = dt                # 时间步长(s)
        self.dx = welldepth/nobox   # 空间步长(m)
        self.g = 9.81               # 重力加速度(m/s²)
        
        # 初始化网格与几何参数
        self.x = np.linspace(-welldepth + self.dx/2, -self.dx/2, nobox)
        self.area = np.pi/4 * (0.331**2 - 0.127**2) * np.ones(nobox)
        
        # 物性参数
        self.rho0 = 1000   # 水密度(kg/m³)
        self.al = 1500     # 水中声速(m/s)
        self.rt = 316**2   # 理想气体参数(m/s)²
        
        # 初始化变量场
        self.initialize_variables()
        
    def initialize_variables(self):
        # 定义原始变量
        self.p = np.zeros(self.nobox)       # 压力场(Pa)
        self.rho_l = np.zeros(self.nobox)   # 液相密度(kg/m³)
        self.rho_g = np.zeros(self.nobox)   # 气相密度(kg/m³)
        self.alpha_l = np.zeros(self.nobox) # 液相体积分数
        self.alpha_g = np.zeros(self.nobox) # 气相体积分数
        self.v_l = np.zeros(self.nobox)     # 液相速度(m/s)
        self.v_g = np.zeros(self.nobox)     # 气相速度(m/s)
        
        # 定义守恒变量
        self.q = np.zeros((3, self.nobox))  # 守恒量矩阵
        
        # 执行静水压力初始化
        self.initialize_hydrostatic()

3. 结果与讨论

典型案例分析

案例1:边界斜率限制器影响

对比了边界单元斜率限制器的不同处理方式:

  • 置零法:保持质量守恒但引入数值振荡
  • 邻单元复制法:提高计算精度但需特殊处理保证质量守恒
案例2:网格收敛性分析

网格敏感性研究表明:

  • 25网格:存在明显数值扩散
  • 50网格:计算精度与效率最佳平衡
  • 100网格:精度提升有限但计算量倍增
def 网格敏感性分析():
    案例 = [25, 50, 100]
    时间步长 = [0.02, 0.01, 0.005]
    
    for 网格数, 步长 in zip(案例, 时间步长):
        模拟器 = WellSimulation(nobox=网格数, dt=步长)
        # 执行模拟并收集数据
        # 绘制压力剖面图
案例3:新旧模型对比

新型多流态模型显示:

  • 最终压力降低(井底460bar vs 627bar)
  • 压力稳定时间延长(9000秒 vs 7000秒)
  • 气体运移行为更符合物理实际
案例4:悬浮效应影响

4m³井涌的关键发现:

  • 0%悬浮:井口压力234bar,17000秒稳定
  • 1%悬浮:井口压力降低49bar至185bar,16000秒稳定
  • 3%悬浮:井口压力67bar,8000秒完全悬浮

4. 结论与展望

本研究通过Python实现完整复现了原文献的核心发现:

  1. 基于压力上升斜率估算气体运移速度的方法不可靠
  2. 多流态耦合模型显著提升压力预测精度
  3. 50网格单元实现计算效率与精度的最优平衡
  4. 边界单元斜率限制器的特殊处理对质量守恒至关重要

未来研究方向建议:

  • 非牛顿流体本构模型
  • 变径井筒几何建模
  • 温度场耦合计算
  • 高级摩擦压降模型
def 未来扩展():
    # 潜在模型增强方向
    非牛顿流体 = True
    变几何井筒 = True
    温度效应 = True
    高级摩擦模型 = True
    
    if 非牛顿流体:
        # 实现屈服应力与流变模型
        pass
        
    if 变几何井筒:
        # 添加锥形井段描述
        pass

本数值模型为井涌行为研究与井控策略优化提供了可靠的分析工具。

如需更详细复现代码,请联系博主。
(【D】Fjelde, Kjell_A油田井涌运移压力积累的数值研究.pdf)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pk_xz123456

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值