
大模型
文章平均质量分 84
程序员石磊
专注大模型、AI Agent、室内定位、在职读研分享!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
如何榨干GPU性能?6招让你的模型训练快如闪电
此文章来源于 Stanford CS336 l Language Modeling from Scratch | Spring 2025 | Lecture 5: GPUs 的整理扩展想让你的深度学习模型训练速度飙升?GPU优化是关键!掌握以下6个核心技巧,轻松突破算力瓶颈👇。原创 2025-06-11 09:49:33 · 75 阅读 · 0 评论 -
Vision-R1:用 “冷启动 + 强化学习” 解锁多模态模型的推理能力
首次证明RL训练可有效提升MLLMs的复杂推理能力,为多模态模型在教育、科研等领域的应用奠定基础。:多模态大模型、推理能力、冷启动、强化学习。原创 2025-03-20 10:02:50 · 325 阅读 · 0 评论 -
GenieBlue:让大模型在手机上跑起来的多模态解决方案
GenieBlue为移动端多模态应用(如智能助手、图像问答)提供了高效解决方案,推动AI在边缘设备的落地。:大语言模型、多模态、边缘计算、移动端部署。原创 2025-03-20 09:58:24 · 391 阅读 · 0 评论 -
没有显卡也能玩转deepseek?手把手教你白嫖谷歌 Colab 运行 deepseek!
最近把我的论文总结ai agent ()往cloab迁移,目的是解决抓取国外文献网络限制问题,正好突发奇想,是否可以在colab上运行deepseek,结果还真可以。本文将分享如何在 Google Colab 上运行 Ollama deepseek的详细步骤。原创 2025-02-13 10:06:39 · 1170 阅读 · 0 评论 -
春节DeepSeek火爆全球,亲朋好友都在问这些问题!
DeepSeek适合所有和文字处理相关的任务,效率远超传统搜索引擎。本地搭建可以用Ollama,但需要高配置显卡;小白用户建议用硅基流动,稳定且免费Tokens多!生成内容空洞?快去学提示工程,吴恩达的课程值得一看!如果你也想试试DeepSeek,赶紧行动起来吧!👉硅基流动注册链接(现在注册还送2000万Tokens,手慢无!#DeepSeek #AI工具 #提示工程 #硅基流动 #Ollama #吴恩达。原创 2025-02-04 10:53:37 · 250 阅读 · 0 评论 -
学术总结Ai Agent中firecrawl(大模型爬虫平台)的超简单的docker安装方式教程
之前开源了,但是对非计算机专业来说,门槛有点高,再加上docker hub镜像被屏蔽,更是不容易上手啊。也有考虑用dify或者扣子去复刻一个,但是从专业用户的角度出发通过界面来拖拽配置实在是不高效,没有自己写代码来的直接,但是对非计算机专业的用户确实不友好。为了降低一下门槛,稍微进行了改进。下面开始正文:这个开源项目其中有个环节是利用firecrawl抓取论文,然后转成对大模型友好的LLM格式。原创 2025-01-27 00:05:35 · 2655 阅读 · 4 评论 -
大模型论文速递(11.26-11.29)
多模态学习、视觉语言模型、人工智能解释性本研究探讨了多智能体系统在生物医学领域的应用潜力和价值。通过引入成本效益分析法、动态模型技术和通讯代理等方法,证明了多智能体系统的有效性。该技术能够提高研发效率,优化成本,并改善监管合规性,为解决当前生物医药领域面临的挑战提供了宝贵的参考。原创 2024-11-30 07:56:56 · 745 阅读 · 0 评论 -
大模型论文速递(11.23-11.25)
为更好地发挥这些技术的优势并规避其可能造成的负面影响,我们建议在未来的研究中加强对相关伦理议题的关注,同时呼吁社会各界共同参与制定和完善相关的监管框架和行业标准。尽管这种方法目前仍然有一些局限性,如依赖于训练数据的质量和对计算时间的额外需求等,但通过进一步的研究和完善,其潜力将为自然语言处理领域带来更大的进步。本研究首次尝试将大型语言模型应用于医疗领域中患者反馈的基于方面的情感分析,这不仅可以提高处理大规模文本数据的能力,还能够更加精准地捕捉到患者的实际需求和满意度情况。原创 2024-11-25 19:11:53 · 481 阅读 · 0 评论 -
大模型论文速递(11.18-11.22)
MERAdiag系统采用预训练大语言模型(LLMs)与对比学习框架,以提高在医疗记录中识别和预测ICD-9和ICD10等不同版本诊断代码的能力。该方法基于一个精心设计的提示机制,将历史医学信息转化为文本序列供模型理解,并通过对比学习进行微调,增强对特定任务的理解。参数值智能体数量3通讯轮次3每个智能体的记忆观察数10最大订购量100领先时间2温度0.1最大输出标记数90库存成本1后备成本1订单成本1固定订单成本1需求预测工具大小30。原创 2024-11-22 14:48:28 · 930 阅读 · 0 评论 -
探索AgentOps:打造可观测的基础模型代理系统
AgentOps是一种类似于DevOps/MLOps的完整平台,支持从开发到生产的全生命周期操作管理。其核心目标是通过追踪和观测代理系统的行为,确保系统的可靠性和可控性。原创 2024-11-20 15:20:02 · 956 阅读 · 0 评论 -
大模型论文精华-20241117
尽管在临床环境中部署LLM技术存在一定的复杂性,但该文档提供了一个全面的指南来促进LLM的有效集成到临床工作流程中,特别关注利用DashScope的应用程序编程接口服务进行基于自然语言的患者预后和器官支持推荐。本文提出了一个新的知识增强型对话系统的评估框架,包括多个方面的评价方法和一个基于大规模语言模型的基准测试集合。本研究首次全面系统性地比较和评估了全球范围内不同大型语言模型在牙科执照考试中的表现,揭示了这些技术工具在全球不同语言及地理背景下的准确性差异,并强调了缺乏足够的训练数据对提高其准确性的阻碍。原创 2024-11-17 15:26:21 · 767 阅读 · 0 评论 -
大模型论文精华-AI在医疗诊断、语言学习与情绪识别等领域的最新应用进展
自然语言处理, 抑郁症筛查, 机器学习模型, 文本分类, 非正常声音, AI 语音技术, 音乐创作, 自动语音识别模型, 在-context 学习, 多模态, 大型语言模型, 病理信息学, 组织准备, 视觉-语言模型, 日本专科医生考试, 医学影像学, AE-GPT, 流感疫苗不良事件, 信息抽取, 低比特量化, LLaMA3, 模型性能, 效率优化, 服务系统, 价值共创, 工程设计, 人机交互, 人工智能, 机器自主性, 环境适应能力, 法律边界, 双重使用生物技术, 民主化访问, 生物安全, 自动化,原创 2024-11-14 09:45:00 · 960 阅读 · 0 评论 -
大模型论文精华—20241111
本研究探讨了大型语言模型(LLMs)在辅助医生进行神经病理学诊断中的潜在应用。具体来说,研究人员通过设计特定的问题和病例背景,询问多个流行的LLMs,并根据这些模型的回答来评估其对罕见或复杂肿瘤类型的识别能力。原创 2024-11-11 23:00:33 · 719 阅读 · 0 评论 -
大模型论文精华-20241108
如何利用大型语言模型为专业人员提供有效的培训方案?原创 2024-11-09 14:13:49 · 915 阅读 · 0 评论 -
大模型论文精华-20241104
随着人工智能技术的发展及其在团队环境中日益广泛的应用,人们对于如何理解和评价AI代理的态度和看法变得尤为重要。该研究关注于探讨不同框架下人们对AI代理的感知差异,并探究这些感知是如何影响AI代理与人类成员之间的互动及合作效率。原创 2024-11-04 11:20:58 · 969 阅读 · 0 评论 -
大模型论文集-20241103
如何实现基于信息技术在教育材料中的语义术语集自动化的定义和识别。大型语言模型(LLMs)如何改变放射学实践,具体体现在它们生成的患者友好的总结上?原创 2024-11-03 22:19:15 · 1014 阅读 · 0 评论 -
MedMobile:首款移动设备运行的医学级语言模型突破!
传统的大型语言模型需要大量计算资源,而MedMobile不仅能够在移动设备上运行,还展现了与顶尖医学模型相媲美的表现。MedMobile的开发团队认为,这种小型语言模型在医疗领域之外同样有着广泛的应用潜力,能够在资源有限的环境中为专业人员提供强大的技术支持。近年来,语言模型(LM)在医学领域的表现令人瞩目,但高昂的计算成本和隐私问题阻碍了其广泛应用。尽管模型参数量小,但在医学问答测试(如USMLE)中,MedMobile的得分达到了。的模型,它是首款能够在移动设备上运行的医学级语言模型。原创 2024-10-24 08:44:35 · 548 阅读 · 0 评论 -
大模型论文-20241013
实验表明,在保持准确率的情况下,通过采用本文提出的方法可以大幅减少计算资源的需求,并且加速推理过程。本研究表明,通过使用LLMs解锁法律文件的提取和分析的新效率,为自动化的大型规模能源政策研究开辟了道路。这项工作展示了未来支持类似的大规模政策研究的机会,并且在不断变化的能源政策景观中保持数据库准确性和及时性的能力。尽管大型语言模型可能模拟出复杂的行为,但这主要是通过模式识别和数据驱动的方法实现的,而不是真正意义上的语言或认知理解。为了优化超大规模预训练模型的性能,研究者提出了一种结合参数量化的策略。原创 2024-10-13 16:43:46 · 654 阅读 · 0 评论 -
大模型论文集-20241011期
如何通过自监督方法有效地在没有标签数据的情况下学习时间序列数据的表示?原创 2024-10-11 17:18:23 · 1133 阅读 · 0 评论 -
大模型论文总结-20241009期
如何利用大型语言模型辅助的信息提取方法,从非结构化的桥梁检查报告中高效准确地抽取关键数据,并用于建立维护所需的数据库?原创 2024-10-09 11:23:32 · 916 阅读 · 0 评论 -
大模型论文总结-20241004期
本文章由本人开发的论文总结AI Agent进行整理。项目地址:https://github.com/zhangleino1/paper-summarizer。原创 2024-10-04 20:23:50 · 2597 阅读 · 0 评论 -
如何在Android上运行Llama 3.2
随着Llama 3.2的发布,Meta在将强大的语言模型带到边缘和移动设备方面取得了重大进展。Llama 3.2包含了专为智能手机和平板电脑高效运行而设计的轻量级模型(1B和3B参数)。Llama 3.2是Meta最新的开源语言模型版本,经过优化以适应边缘和移动设备。轻量级模型(1B和3B参数)支持高达128K令牌的上下文长度,并能够执行诸如摘要、指令跟随和重写等任务,均可在您的设备上本地运行。应用安装后,您可以开始在Android设备上直接与Llama 3.2模型互动。Rust是交叉编译标记器所需的。原创 2024-09-26 13:26:35 · 1935 阅读 · 0 评论 -
我开源了:学术论文总结AI-Agent!
可以设置抓取最近几天的论文内容并按类别输出到不同的md文档,解决的问题,创新点等都有了,很清晰。原创 2024-09-11 12:17:01 · 1443 阅读 · 0 评论 -
基于RAG多层次的多代理架构来处理时序任务
Agentic RAG框架通过结合多代理架构和动态提示机制,为时间序列分析提供了一种灵活且高效的解决方案。它不仅在多个基准数据集上实现了先进的性能,而且展示了在应对时间序列分析中复杂挑战时的潜力。这种方法为未来的时间序列建模研究提供了一个有前景的方向。原创 2024-08-30 15:22:07 · 1824 阅读 · 0 评论 -
大模型-如何优化检索增强(RAG)的15种高级技术
体系化介绍大模型原创 2024-08-19 22:52:43 · 2588 阅读 · 1 评论 -
用于可穿戴传感器的人类活动识别、健康监测和行为建模的大型语言模型
可穿戴技术的普及使得传感器数据的大量生成成为可能,为健康监测、活动识别和个性化医疗的进步提供了重要机会。然而,这些数据的复杂性和规模也带来了建模和分析的巨大挑战,从时间序列建模到深度学习技术,各种方法相继应用。最新的前沿是采用大型语言模型(LLMs),如GPT-4和Llama,用于通过可穿戴传感器数据分析、建模、理解和生成人类行为。这篇综述探讨了将LLMs应用于基于传感器的人类活动识别和行为建模的当前趋势和挑战。综述提供了可穿戴传感器数据与LLMs交叉领域的全面概览,探讨了当前的状态和未来前景。原创 2024-07-15 10:55:49 · 1404 阅读 · 0 评论 -
大语言模型在时空分析中的能力评估
大模型处理时序数据原创 2024-07-03 07:18:04 · 1310 阅读 · 0 评论 -
LongRAG:增强长上下文大语言模型的检索增强生成
在传统的RAG框架中,检索单元通常较短,如100字的维基百科段落。检索器需要在庞大的语料库中搜索,这增加了检索负担。为了减轻这种负担,作者提出了LongRAG框架,包括“长检索器”和“长阅读器”,将整个维基百科处理成4K-token的单位,使检索单元减少至60万,大大减轻了检索器的负担,显著提高了检索性能。在不需要训练的情况下,LongRAG在NQ和HotpotQA(全维基)上达到了62.7%和64.3%的EM(精确匹配)率,与最先进的模型相当。原创 2024-06-26 07:31:36 · 1379 阅读 · 0 评论 -
基于大型语言模型的全双工语音对话方案
本论文介绍了一种能够实现全双工操作的生成性对话系统,允许无缝互动。该系统基于大型语言模型(LLM),并与感知模块、运动功能模块以及一个简单的有限状态机(称为神经FSM)结合。感知和运动功能模块协同工作,使系统能够同时与用户进行说话和聆听。LLM生成文本标记以响应查询,并通过发出控制标记给神经FSM来自主决定何时开始回应、等待或打断用户。这些任务通过在实时对话的序列化视图上进行下一个标记的预测来完成。原创 2024-06-19 10:51:02 · 2238 阅读 · 0 评论 -
通过噪声扰动缓解多模态大型语言模型的幻觉问题
该论文提出了一种名为NoiseBoost的方法,通过噪声扰动来缓解多模态大语言模型(MLLM)中的幻觉问题。论文分析指出,幻觉主要源于大语言模型固有的总结机制,导致对语言符号的过度依赖,而忽视了视觉信息。NoiseBoost通过在视觉特征中加入噪声扰动,作为一种正则化手段,促进视觉和语言符号之间的注意力权重平衡。实验结果显示,NoiseBoost不仅在监督微调和强化学习中提升了模型性能,还首次实现了MLLM的半监督学习,充分利用了未标记数据。原创 2024-06-19 09:46:47 · 1119 阅读 · 0 评论 -
快速LLaMA:面向大型语言模型的查询感知推理加速 论文摘要翻译与评论
大型语言模型(LLMs)在理解和推理长文本上下文方面的能力是各领域进步的关键。然而,它们在识别相关上下文和记忆搜索方面仍存在困难。为了解决这个问题,我们引入了Query-aware Inference for LLMs(Q-LLM)系统,该系统旨在像人类认知一样处理广泛的序列。通过专注于与给定查询相关的记忆数据,Q-LLM能够在固定窗口大小内准确捕捉相关信息,并为查询提供精确答案。它不需要额外的训练,可以无缝集成到任何LLMs中。原创 2024-06-16 11:49:18 · 1290 阅读 · 0 评论 -
大模型-人类病理学的语言视觉AI助手
计算病理学领域已经在任务特定的预测模型和任务无关的自监督视觉编码器的发展方面取得了显著进展。然而,尽管生成性人工智能快速增长,针对病理学定制的通用多模态AI助手和副驾驶的研究却很有限。在此,我们提出了PathChat,这是一个面向人类病理学的视觉-语言通用AI助手。我们通过将病理学基础视觉编码器与预训练的大型语言模型结合,并在超过45.6万个多样化的视觉语言指令上进行微调,构建了PathChat。原创 2024-06-16 10:30:54 · 1178 阅读 · 0 评论 -
大模型-智能游戏代理,不再是傻傻的机器人!
背景游戏代理在推进通用人工智能(AGI)方面扮演着重要角色。大型语言模型(LLMs)及其多模态版本(MLLMs)的进展为赋予游戏代理以人类般的决策能力提供了前所未有的机会。研究目的本文提供了一个全面的综述,涵盖LLM基础的游戏代理,包括概念框架、现有研究方法和未来研究方向。游戏代理的开发在推进通用人工智能(AGI)方面扮演着关键角色。大型语言模型(LLMs)及其多模态对应模型(MLLMs)的进展,为在复杂的计算机游戏环境中赋予游戏代理以人类般的决策能力提供了前所未有的机会。原创 2024-06-13 07:49:52 · 849 阅读 · 0 评论 -
谷歌提出面向个人健康大型语言模型
大型语言模型(llm)可以对广泛的信息进行检索、推理和推断。在健康方面,迄今为止,大多数LLM工作都集中在临床任务上。然而,很少整合到临床任务中的移动和可穿戴设备为个人健康监测提供了丰富、连续和纵向的数据来源。本文提出一个新模型,个人健康大型语言模型(PH-LLM),一个经过微调的Gemini版本,用于对数字时间序列个人健康数据的文本理解和推理,用于睡眠和健身应用。原创 2024-06-12 07:42:56 · 1052 阅读 · 0 评论 -
大模型-智能儿科助手
论文标题为“PediatricsGPT: Large Language Models as Chinese Medical Assistants for Pediatric Applications”,提出了一种用于儿科应用的中文大模型助手。为了解决现有大模型在儿科应用中表现欠佳的问题,作者构建了一个高质量的数据集 PedCorpus,并提出了一个系统的训练流程来构建 PediatricsGPT。这包括持续预训练、全参数监督微调、人类偏好优化和参数高效的二次微调。原创 2024-06-10 08:55:34 · 456 阅读 · 0 评论 -
私有大模型:针对长结构文档的回答方法
大型语言模型(LLMs)在处理长文档问答(QA)时面临着无法适应其小上下文窗口的问题。为了解决这一问题,大多数现有工作集中在从文档中检索相关上下文,并将其表示为纯文本。然而,像PDF、网页和演示文稿等文档天然地具有不同页面、表格、部分等结构。将这些结构化文档表示为纯文本与用户对这些文档丰富结构的心理模型不一致。当系统必须查询文档以获取上下文时,这种不一致性会凸显出来,使得看似简单的问题也会难倒QA系统。原创 2024-06-01 15:13:49 · 1271 阅读 · 0 评论