兔子从A地到B地,当中每1公里有一个休息站,兔子体力每次最多可以连续行走两公里,也就是说兔子可以选择行走1公里或者两公里进行休息,然后继续前进,假设A地距离B地N公里,求兔子的行走休息方案有多少种??
开始看到这个题目,我想到的是动态规划里面钢条切割问题,然后把钢条切割的博客打开,发现并不是这样,思路完全错误。然后我想这应该是一个路径规划的问题吧,就开始建立邻接矩阵,发现怎么也弄不出来。后来在网上看到一个爬楼梯的问题,答案是一个斐波拉契数列,这错了吧!然后重新开始分析,后来发现真的是这样。
我们可以这样分析,假设兔子第k次跳跃到达第m公里,那么怎样才能到达第m公里呢??只有两种可能,第一种是兔子在第k-1次跳跃时在m-1公里,在第k次跳跃了1公里后到达第m公里。第二种是兔子在k-1次在m-2公里处,在第k次跳跃了2公里,到达第m公里。那么我们是否可以认为存在这样的函数f(n)=f(n-1)+f(n-2),f(n)代表兔子跳到n公里是的方案数,看到这个函数一切都明了了。这就是求第n个斐波拉契数列的值。
说到这其他的我就不多说了,直接贴代码吧!
#include
using namespace std;
int main()
{
int n;
int p[1000];
p[0]=1;
p[1]=2;
cin>>n;
for(int i=2;i