兔子路径规划

兔子从A地到B地,当中每1公里有一个休息站,兔子体力每次最多可以连续行走两公里,也就是说兔子可以选择行走1公里或者两公里进行休息,然后继续前进,假设A地距离B地N公里,求兔子的行走休息方案有多少种??
开始看到这个题目,我想到的是动态规划里面钢条切割问题,然后把钢条切割的博客打开,发现并不是这样,思路完全错误。然后我想这应该是一个路径规划的问题吧,就开始建立邻接矩阵,发现怎么也弄不出来。后来在网上看到一个爬楼梯的问题,答案是一个斐波拉契数列,这错了吧!然后重新开始分析,后来发现真的是这样。
我们可以这样分析,假设兔子第k次跳跃到达第m公里,那么怎样才能到达第m公里呢??只有两种可能,第一种是兔子在第k-1次跳跃时在m-1公里,在第k次跳跃了1公里后到达第m公里。第二种是兔子在k-1次在m-2公里处,在第k次跳跃了2公里,到达第m公里。那么我们是否可以认为存在这样的函数f(n)=f(n-1)+f(n-2),f(n)代表兔子跳到n公里是的方案数,看到这个函数一切都明了了。这就是求第n个斐波拉契数列的值。
说到这其他的我就不多说了,直接贴代码吧!
#include
using namespace std;
int main()
{
    int n;
	int p[1000];
	p[0]=1;
	p[1]=2;
	cin>>n;
	for(int i=2;i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值