数据的归一化

数据归一化问题

  • 第一次接触到数据归一化问题是在做飞卡的时候,我当时就在想,为什么要对数据进行归一化处理,这样做有什么好处,后来网上查了资料才明白了一点点:(1)归一化后可以将各个数据的量纲对应起来,换句话说就是两个变量之间不是一个量级的,不能直接做处理,归一化后就可以作处理了。(2)会使模型数据的收敛速度变快(3)会使模型的精度变高。综上所述,归一化操作还是很有必要的。

  • 归一化的几种方法

(1)线性归一化

  • 这是我们平常用的是最多的,具体公式如下:

  • 看到这个式子是不是感觉很熟悉,这种方法是线性归一化,其中每个数据都是符合均匀分布的这一点很重要。

(2)s型曲线归一化

正常情况下,数据的处理用的都是线性归一化,但是如果实验的数据服从某种分布函数时,其中最多的就是正态分布了,假设实验数据是服从正态分布的,我们可以通过一个函数来对数据进行变换,这个函数选取的原则就是使得原有数据中的信息量最多,即信息熵最大。首先我说一下信息熵的计算方法:


可能这里讲熵的概念更难理解了,换句话说吧,你觉得所有分布函数中什么分布函数能让上述式子中l达到最大值,均匀分布是不是??这也是线性归一化最后数据服从均匀分布的原因。

综上所述,就是说我们需要将原有的数据x通过一个函数h转换为一个均匀分布的数据h(x),这样可以使得数据的信息量最大,这个函数怎么找到呢??我记得我曾经在求正态分布的随机数的时候证明过一个服从任何分布的随机数(http://blog.csdn.net/hxlove123456/article/details/78045391),其分布函数一定是一个均匀分布的函数,所以随机数的分布函数是一个很好的选择。

对于一个服从正态分布的随机数而言,其分布函数就是s函数。


所以在对数据进行归一化的时候s函数对数据进行归一化的方法用的很广泛,这是因为自然界中服从正态分布的随机数多而已,不是其本身的特性所决定。

对上面文章中有不懂的地方,可以参考一下下面这篇博客:

https://www.tuicool.com/articles/uMraAb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值