本节概括:
1 红黑树的概念
2 红黑树的性质
3 红黑树节点的定义
4 红黑树结构
5 红黑树的插入操作
6 红黑树的验证
7 红黑树与AVL树的比较
8.红黑树的迭代器
1 红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或
Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出俩倍,因而是接近平衡的。

2 红黑树的性质
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点
个数的两倍?
答:当一个树被定义为红黑树时,那么它的每条路径下的黑色节点就固定了,因此只有有一个路径是所以路径中最短的,那么一定是全黑路径,最长的一定是黑红相间的。大家可以想象一下最极端的情况是什么,无非就是有一条路径上全是黑色节点,那么根据3,4特性,这条路径一定是最短路径,那么这颗红黑树的最长路径的节点个数一定不超过红黑相间的那条路径。这条红黑相间的路径是那条全黑路径的2倍,也就是最长不超过了2倍。因此只要满足上面特性那么“最长路径中节点个数不会超过最短路径节点个数的两倍”这个特性就自动满足了。
3 红黑树节点的定义
// 节点的颜色
enum Color{RED, BLACK};
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _color(color)
{}
RBTreeNode<ValueType>* _pLeft; // 节点的左孩子
RBTreeNode<ValueType>* _pRight; // 节点的右孩子
RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给
出该字段)
ValueType _data; // 节点的值域
Color _color; // 节点的颜色
};
思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?
答:如果插入的是黑色节点,那么就需要修改全部路径。 如果只是红色节点,只需要修改当前路径或者不需要修改。
4 红黑树结构
了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了
与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft
域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:

5 红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1. 按照二叉搜索的树规则插入新节点
emplate<class ValueType>
class RBTree
{
//……
bool Insert(const ValueType& data)
{
PNode& pRoot = GetRoot();
if (nullptr == pRoot)
{
pRoot = new Node(data, BLACK);
// 根的双亲为头节点
pRoot->_pParent = _pHead;
_pHead->_pParent = pRoot;
}
else
{
// 1. 按照二叉搜索的树方式插入新节点
// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
// 若满足直接退出,否则对红黑树进行旋转着色处理
}
// 根节点的颜色可能被修改,将其改回黑色
pRoot->_color = BLACK;
_pHead->_pLeft = LeftMost();
_pHead->_pRight = RightMost();
return true;
}
private:
PNode& GetRoot(){ return _pHead->_pParent;}
// 获取红黑树中最小节点,即最左侧节点
PNode LeftMost();
// 获取红黑树中最大节点,即最右侧节点
PNode RightMost();
private:
PNode _pHead;
};
2. 检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
情况一: cur为红,p为红,g为黑,u存在且为红


cur和p均为红,违反了性质三,此处能否将p直接改为黑?
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑


p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红
情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
则转换成了情况2
bool Insert(const ValueType& data)
{
// ...
// 新节点插入后,如果其双亲节点的颜色为空色,则违反性质3:不能有连在一起的红色结
点
while(pParent && RED == pParent->_color)
{
// 注意:grandFather一定存在
// 因为pParent存在,且不是黑色节点,则pParent一定不是根,则其一定有双亲
PNode grandFather = pParent->_pParent;
// 先讨论左侧情况
if(pParent == grandFather->_pLeft)
{
PNode unclue = grandFather->_pRight;
// 情况三:叔叔节点存在,且为红
if(unclue && RED == unclue->_color)
{
pParent->_color = BLACK;
unclue->_color = BLACK;
grandFather->_color = RED;
pCur = grandFather;
pParent = pCur->_pParent;
}
else
{
// 情况五:叔叔节点不存在,或者叔叔节点存在且为黑
if(pCur == pParent->_pRight)
{
_RotateLeft(pParent);
swap(pParent, pCur);
}
// 情况五最后转化成情况四
grandFather->_color = RED;
pParent->_color = BLACK;
_RotateRight(grandFather);
}
}
else
{
// 右侧请学生们自己动手完成
}
}
// ...
}
动态效果演示:
以升序(降序)插入构建红黑树


随机插入构建红黑树

图文讲解:

6 红黑树的验证
黑树的检测分为两步:
1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
2. 检测其是否满足红黑树的性质
bool IsValidRBTree()
{
PNode pRoot = GetRoot();
// 空树也是红黑树
if (nullptr == pRoot)
return true;
// 检测根节点是否满足情况
if (BLACK != pRoot->_color)
{
cout << "违反红黑树性质二:根节点必须为黑色" << endl;
return false;
}
// 获取任意一条路径中黑色节点的个数
size_t blackCount = 0;
PNode pCur = pRoot;
while (pCur)
{
if (BLACK == pCur->_color)
blackCount++;
pCur = pCur->_pLeft;
}
// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数
size_t k = 0;
return _IsValidRBTree(pRoot, k, blackCount);
}
bool _IsValidRBTree(PNode pRoot, size_t k, const size_t blackCount)
{
//走到null之后,判断k和black是否相等
if (nullptr == pRoot)
{
if (k != blackCount)
{
cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;
return false;
}
return true;
}
// 统计黑色节点的个数
if (BLACK == pRoot->_color)
k++;
// 检测当前节点与其双亲是否都为红色
PNode pParent = pRoot->_pParent;
if (pParent && RED == pParent->_color && RED == pRoot->_color)
{
cout << "违反性质三:没有连在一起的红色节点" << endl;
return false;
}
return _IsValidRBTree(pRoot->_pLeft, k, blackCount) &&
_IsValidRBTree(pRoot->_pRight, k, blackCount);
}
7 红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追
求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,
所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红
黑树更多.
8 红黑树的迭代器
迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代
器,需要考虑以前问题:
begin()与end()
STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,
可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位
置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?
能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行--操作,必须要能找最
后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置:

// 找迭代器的下一个节点,下一个节点肯定比其大
void Increasement()
{
//分两种情况讨论:_pNode的右子树存在和不存在
// 右子树存在
if(_pNode->_pRight)
{
// 右子树中最小的节点,即右子树中最左侧节点
_pNode = _pNode->_pRight;
while(_pNode->_pLeft)
_pNode = _pNode->_pLeft;
}
else
{
// 右子树不存在,向上查找,直到_pNode != pParent->right
PNode pParent = _pNode->_pParent;
while(pParent->_pRight == _pNode)
{
_pNode = pParent;
pParent = _pNode->_pParent;
}
// 特殊情况:根节点没有右子树
if(_pNode->_pRight != pParent)
_pNode = pParent;
}
}
// 获取迭代器指向节点的前一个节点
void Decreasement()
{
//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不存在
// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置
if(_pNode->_pParent->_pParent == _pNode && _pNode->_color == RED)
_pNode = _pNode->_pRight;
else if(_pNode->_pLeft)
{
// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点
_pNode = _pNode->_pLeft;
while(_pNode->_pRight)
_pNode = _pNode->_pRight;
}
else
{
// _pNode的左子树不存在,只能向上找
PNode pParent = _pNode->_pParent;
while(_pNode == pParent->_pLeft)
{
_pNode = pParent;
pParent = _pNode->_pParent;
}
_pNode = pParent;
}
}
源代码:
#pragma once
enum Colour
{
RED,
BLACK
};
template<class T>
struct RBTreeNode
{
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
T _data;
Colour _col;
RBTreeNode(const T& data)
:_data(data)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _col(RED)
{
}
};
template<class T>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T> Self;
Node* _node;
RBTreeIterator(Node* node)
:_node(node)
{
}
// 请完善迭代器的++操作,让迭代器可以移动
Self& operator++()
{
//右树不为空访问右树的最左节点
if (_node->_right)
{
Node* cur = _node->_right;
while (cur && cur->_left)
{
cur = cur->_left;
}
_node = cur;
}
else//如果cur是父亲的左边节点那么就意为着父亲的
{
Node* cur = _node;
Node* parent = _node->_parent;
// 找孩子是父亲左的那个祖先节点,就是下一个要访问的节点
while (parent && cur == parent->_right)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
// 请完善下面两个操作,让迭代器可以像指针一样操作
T& operator*()
{
return _node->_data;
}
T* operator->()
{
return &(_node->_data);
}
// 请完善下面两个操作,让迭代器能够支持比较
bool operator==(const Self& s)const
{
return this == s;
}
bool operator!=(const Self& s)const
{
return this != s;
}
};
// 注意:红黑树完整操作参考课堂代码
// 此处给红黑树添加迭代器,其他用不到的操作暂被拿掉,只留下红黑树构建的核心操作
template<class K, class T, class KeyOfT>
class RBTree
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T> iterator;
public:
// 请给红黑树的迭代器取别名,方便后序使用
// ________________________
// 请完善Begin() 和 End()方法
iterator begin()
{
Node* cur = _root;
while (cur && cur->_left)
{
cur = cur->_left;
}
return iterator(cur);
}
iterator end()
{
return iterator(nullptr);
}
~RBTree()
{
Destroy(_root);
_root = nullptr;
}
bool Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return true;
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(data);
// 新增节点。颜色红色给红色
cur->_col = RED;
if (kot(parent->_data) < kot(data))
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
// g
// p u
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
// u存在且为红 -》变色再继续往上处理
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
// u存在且为黑或不存在 -》旋转+变色
if (cur == parent->_left)
{
// g
// p u
//c
//单旋
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p u
// c
//双旋
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
// g
// u p
Node* uncle = grandfather->_left;
// 叔叔存在且为红,-》变色即可
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔不存在,或者存在且为黑
{
// 情况二:叔叔不存在或者存在且为黑
// 旋转+变色
// g
// u p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
private:
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parentParent == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
private:
Node* _root = nullptr;
};