库手册:
https://altair-viz.github.io/getting_started/overview.html
IDE:
Pycharm 2021.3 + Python 3.10
库示例:
https://altair-viz.github.io/gallery/index.html
调用的原始API 手册
主要和示例库中的参数做对比:
https://vega.github.io/vega-lite/examples/
1、安装库
import altair as alt
from vega_datasets import data
2、代码
示例1-图1
import altair as alt
# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()
Car_chart = alt.Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
).interactive()
# Car_chart.save()将图表命名为Car_chart并以html的形式存储在当前路径下
Car_chart.save("Car_chart.html")
# Car_chart.save()将数据命名为Car_chart并以json的形式存储在当前路径下
Car_chart.save("chart.json")
# Car_chart.show()代码运行完成后,将图表后打开浏览器显示
Car_chart.show()
示例2-图2
import altair as alt
from vega_datasets import data
# Since these data are each more than 5,000 rows we'll import from the URLs
airports = data.airports.url
flights_airport = data.flights_airport.url
states = alt.topo_feature(data.us_10m.url, feature="states")
# Create mouseover selection
select_city = alt.selection_single(
on="mouseover", nearest=True, fields=["origin"], empty="none"
)
# Define which attributes to lookup from airports.csv
lookup_data = alt.LookupData(
airports, key="iata", fields=["state", "latitude", "longitude"]
)
""" =====================background 背景===================== """
background = alt.Chart(states).mark_geoshape(
fill="lightgray",
stroke="white"
).properties(
width=750,
height=500
).project("albersUsa")
""" =====================connections 连接线===================== """
connections = alt.Chart(flights_airport).mark_rule(opacity=0.35).encode(
latitude="latitude:Q",
longitude="longitude:Q",
latitude2="lat2:Q",
longitude2="lon2:Q"
).transform_lookup(
lookup="origin",
from_=lookup_data
).transform_lookup(
lookup="destination",
from_=lookup_data,
as_=["state", "lat2", "lon2"]
).transform_filter(
select_city
)
""" =====================points 目的地 ===================== """
points = alt.Chart(flights_airport).mark_circle().encode(
latitude="latitude:Q",
longitude="longitude:Q",
size=alt.Size("routes:Q", scale=alt.Scale(range=[0, 1000]), legend=None),
order=alt.Order("routes:Q", sort="descending"),
tooltip=["origin:N", "routes:Q"]
).transform_aggregate(
routes="count()",
groupby=["origin"]
).transform_lookup(
lookup="origin",
from_=lookup_data
).transform_filter(
(alt.datum.state != "PR") & (alt.datum.state != "VI")
).add_selection(
select_city
)
m = (background + connections + points).configure_view(stroke=None)
m.save("USA-airports.html")
m.show()