【数据库】优化处理效率——关联表法

目录

一、业务场景

二、需求分析


一、业务场景

        假设有两张表,一张表是部分用户信息表(user_info),大约有200个用户信息,另一张表是全量用户(大约几百万用户)网站购物信息日志表(info_log)大约有一个亿条的数据信息。此时需要将部分用户信息表(user_info)中200个用户购买服装类的信息拿出进行离线分析。

二、需求分析

        业务场景的描述需求为:需要将部分用户信息表(user_info)中200个用户购买服装类的信息全量拿出。这里是一张小表(user_info)和一张大表(info_log)。

思路一:for循环思路(错误思想

        绝对不能使用for循环遍历的思想进行处理,因为for循环需要大约遍历200*100000000次,是比较耗时的一种操作。因为如果一次循环需要0.002ms,就需要分析约2.7h。

思路二:关联表法(正确思想

        select 需要的字段 from user_info t left_join info_log n on t.user=n.user and n.tag='服装类';

         这种关联表法的思路比较节省时间,大约使用几分钟的时间就可以将亿级的大表进行关联分析完毕。但是处理极小表的关联,比如两个表都只有几百条数据,也是需要几分钟。所以针对很大量级表的处理使用表关联法提升分析效率非常显著。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郝少

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值