Ubuntu20.04 深度学习环境配置(持续完善)


pytorch + torchvision + python 版本对应及环境安装

torch 版本 torchvision 版本 torchaudio 版本 支持的 Python 版本(示例) Cuda 版本
2.5.1 0.20.1 2.5.1 >=3.9, < 3.13 (3.12) [9/10/11/12] 12.4/12.1/11.8
2.5.0 0.20.0 2.5.0 >=3.9, < 3.13 (3.12) [9/10/11/12] 12.4/12.1/11.8
2.4.1 0.19.1 2.4.1 >=3.8, < 3.13 (3.12) [8/9/10/11/12] 12.4/12.1/11.8
2.4.0 0.19.0 2.4.0 >=3.8, < 3.13 (3.12) [8/9/10/11/12] 12.4/12.1/11.8
2.3.1 0.18.1 2.3.1 >=3.8, < 3.13 (3.12) [8/9/10/11/12] 12.1/11.8
2.3.0 0.18.0 2.3.0 >=3.8, < 3.13 (3.12) 12.1/11.8
2.2.2 0.17.2 2.2.2 >=3.8, < 3.12 [8/9/10/11] 12.1/11.8
2.2.1 0.17.1 2.2.1 >=3.8, < 3.12 12.1/11.8
2.2.0 0.17.0 2.2.0 >=3.8, < 3.12 12.1/11.8
2.1.2 0.16.2 2.1.2 >=3.8, < 3.12 (3.10) [8/9/10/11] 12.1/11.8
2.1.1 0.16.1 2.1.1 >=3.8, < 3.12 (3.10) 12.1/11.8
2.1.0 0.16.0 2.1.0 >=3.8, < 3.12 (3.10) 12.1/11.8
2.0.0 0.15.0 2.0.0 >=3.8, < 3.12 (3.8) [9/10/11] 11.8/11.7
1.13.1 0.14.1 0.13.1 >=3.7, <=3.10 (3.8) [7/8/9/10] 11.7/11.6
1.13.0 0.14.0 0.13.0 >=3.7, <=3.10 (3.8) [7/8/9/10] 11.7/11.6
1.12.1 0.13.1 1.12.1 >=3.7, <=3.10 (3.8) [7/8/9/10] 11.6/11.3/10.2
1.12.0 0.13.0 1.12.0 >=3.7, <=3.10 (3.8) [7/8/9/10] 11.6/11.3/10.2
1.11.0 0.12.0 1.11.0 >=3.7, <=3.9 (3.8) [6/7/8/9] 11.3/10.2
1.10.1 0.11.2 0.10.1 >=3.6, <=3.9 (3.8) [6/7/8/9] 11.3/10.2
1.9.0 0.10.0 0.9.0 >=3.6, <=3.9 (3.8) [6/7/8/9] 11.3/10.2
1.9.0 0.9.0 0.9.0 >=3.6, <=3.9 (3.8) [6/7/8/9] 11.3/10.2
1.8.0 0.9.0 0.8.0 >=3.6, <=3.9 (3.8) [6/7/8/9] 11.3/10.2
7.5 7.5 7.5 >=3.6 (3.6) [6] N/A

参考

深度学习 | pytorch + torchvision + python 版本对应及环境安装

安装显卡驱动

使用 nvidia-smi 来查看 NVIDIA GPU 的使用情况和显存信息:

如果系统上安装了 NVIDIA 驱动程序,该命令会显示 GPU 的型号、显存使用情况、温度等信息。

nvidia-smi

在这里插入图片描述

安装 Anaconda

xxx

更新 Conda

conda update conda -y

显卡驱动支持的最高 CUDA 版本

在本地机器上,确保已安装合适版本的 NVIDIA 驱动和 CUDA Toolkit,否则 GPU 无法正常工作。

nvidia-smi

通过 nvcc 命令查看 CUDA Toolkit 版本

如果您的系统安装了 CUDA Toolkit,可以运行以下命令查看版本:

nvcc --version

您会看到类似以下输出:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Feb_14_23:09:47_PST_2023
Cuda compilation tools, release 12.1, V12.1.105

其中 release 12.1 表示当前的 CUDA Toolkit 版本是 12.1。

1.查看当前安装的 torch 版本

python -c "import torch; print(torch.__version__)"
2.4.1.post100   # 若返回这个,表明仅安装的CPU版本 

2.确认当前安装的 PyTorch 是否支持 GPU 加速

python -c "import torch; print(torch.cuda.is_available())"
  • 输出 True 表示 GPU 可用。
  • 输出 False 表示未启用 GPU,可能是因为没有安装支持 CUDA 的版本或系统未检测到 GPU。

3.查看 PyTorch 使用的 CUDA 版本

python -c "import torch; print(torch.version.cuda)"

4.验证 GPU 信息

如果 GPU 可用,您还可以检查当前的 GPU 信息:

python -c "import torch; print(torch.cuda.get_device_name(0))"

以下是关于CUDA工具包、显卡驱动和PyTorch之间关系的清晰总结:

conda虚拟环境

1.创建虚拟环境

conda create --name xxx python=3.11.7

2.激活环境

conda activate xxx

3.退出环境

conda deactivate

4.删除环境

首先要退出当前环境 或 在base环境下执行。

conda env remove --name xxx

5.列出所有环境

conda env list

5.查看虚拟环境大小(Ubuntu)

5.1.Ubuntu下查看虚拟环境大小

du -sh /home/damon/anaconda3           # base环境大小
du -sh /home/damon/anaconda3/envs/*    # 虚拟环境大小
damon@damon-System-Product-Name:~$ du -sh /home/damon/anaconda3/
43G	/home/damon/anaconda3/
damon@damon-System-Product-Name:~$ du -sh /home/damon/anaconda3/envs/xxx/
9.8G	/home/damon/anaconda3/envs/xxx/
damon@damon-System-Product-Name:~$ 

5.2.wins下查看虚拟环境大小

安装 PyTorch 框架及其核心组件

pytorch官网 : pytorch previous-versions

安装PyTorch 2.4.1,cuDNN

1.安装 PyTorch 2.4.1(含 GPU 加速支持)及其配套工具库(TorchVision 和 TorchAudio),基于 CUDA 12.1 驱动环境。
同时,通过 Conda 自动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

草莓奶忻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值