文章目录
pytorch + torchvision + python 版本对应及环境安装
torch 版本 | torchvision 版本 | torchaudio 版本 | 支持的 Python 版本(示例) | Cuda 版本 |
---|---|---|---|---|
2.5.1 | 0.20.1 | 2.5.1 | >=3.9, < 3.13 (3.12) [9/10/11/12] | 12.4/12.1/11.8 |
2.5.0 | 0.20.0 | 2.5.0 | >=3.9, < 3.13 (3.12) [9/10/11/12] | 12.4/12.1/11.8 |
2.4.1 | 0.19.1 | 2.4.1 | >=3.8, < 3.13 (3.12) [8/9/10/11/12] | 12.4/12.1/11.8 |
2.4.0 | 0.19.0 | 2.4.0 | >=3.8, < 3.13 (3.12) [8/9/10/11/12] | 12.4/12.1/11.8 |
2.3.1 | 0.18.1 | 2.3.1 | >=3.8, < 3.13 (3.12) [8/9/10/11/12] | 12.1/11.8 |
2.3.0 | 0.18.0 | 2.3.0 | >=3.8, < 3.13 (3.12) | 12.1/11.8 |
2.2.2 | 0.17.2 | 2.2.2 | >=3.8, < 3.12 [8/9/10/11] | 12.1/11.8 |
2.2.1 | 0.17.1 | 2.2.1 | >=3.8, < 3.12 | 12.1/11.8 |
2.2.0 | 0.17.0 | 2.2.0 | >=3.8, < 3.12 | 12.1/11.8 |
2.1.2 | 0.16.2 | 2.1.2 | >=3.8, < 3.12 (3.10) [8/9/10/11] | 12.1/11.8 |
2.1.1 | 0.16.1 | 2.1.1 | >=3.8, < 3.12 (3.10) | 12.1/11.8 |
2.1.0 | 0.16.0 | 2.1.0 | >=3.8, < 3.12 (3.10) | 12.1/11.8 |
2.0.0 | 0.15.0 | 2.0.0 | >=3.8, < 3.12 (3.8) [9/10/11] | 11.8/11.7 |
1.13.1 | 0.14.1 | 0.13.1 | >=3.7, <=3.10 (3.8) [7/8/9/10] | 11.7/11.6 |
1.13.0 | 0.14.0 | 0.13.0 | >=3.7, <=3.10 (3.8) [7/8/9/10] | 11.7/11.6 |
1.12.1 | 0.13.1 | 1.12.1 | >=3.7, <=3.10 (3.8) [7/8/9/10] | 11.6/11.3/10.2 |
1.12.0 | 0.13.0 | 1.12.0 | >=3.7, <=3.10 (3.8) [7/8/9/10] | 11.6/11.3/10.2 |
1.11.0 | 0.12.0 | 1.11.0 | >=3.7, <=3.9 (3.8) [6/7/8/9] | 11.3/10.2 |
1.10.1 | 0.11.2 | 0.10.1 | >=3.6, <=3.9 (3.8) [6/7/8/9] | 11.3/10.2 |
1.9.0 | 0.10.0 | 0.9.0 | >=3.6, <=3.9 (3.8) [6/7/8/9] | 11.3/10.2 |
1.9.0 | 0.9.0 | 0.9.0 | >=3.6, <=3.9 (3.8) [6/7/8/9] | 11.3/10.2 |
1.8.0 | 0.9.0 | 0.8.0 | >=3.6, <=3.9 (3.8) [6/7/8/9] | 11.3/10.2 |
7.5 | 7.5 | 7.5 | >=3.6 (3.6) [6] | N/A |
参考
深度学习 | pytorch + torchvision + python 版本对应及环境安装
安装显卡驱动
使用 nvidia-smi 来查看 NVIDIA GPU 的使用情况和显存信息:
如果系统上安装了 NVIDIA 驱动程序,该命令会显示 GPU 的型号、显存使用情况、温度等信息。
nvidia-smi
安装 Anaconda
xxx
更新 Conda
conda update conda -y
显卡驱动支持的最高 CUDA 版本
在本地机器上,确保已安装合适版本的 NVIDIA 驱动和 CUDA Toolkit,否则 GPU 无法正常工作。
nvidia-smi
通过 nvcc 命令查看 CUDA Toolkit 版本
如果您的系统安装了 CUDA Toolkit,可以运行以下命令查看版本:
nvcc --version
您会看到类似以下输出:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Feb_14_23:09:47_PST_2023
Cuda compilation tools, release 12.1, V12.1.105
其中 release 12.1 表示当前的 CUDA Toolkit 版本是 12.1。
1.查看当前安装的 torch 版本
python -c "import torch; print(torch.__version__)"
2.4.1.post100 # 若返回这个,表明仅安装的CPU版本
2.确认当前安装的 PyTorch 是否支持 GPU 加速
python -c "import torch; print(torch.cuda.is_available())"
- 输出 True 表示 GPU 可用。
- 输出 False 表示未启用 GPU,可能是因为没有安装支持 CUDA 的版本或系统未检测到 GPU。
3.查看 PyTorch 使用的 CUDA 版本
python -c "import torch; print(torch.version.cuda)"
4.验证 GPU 信息
如果 GPU 可用,您还可以检查当前的 GPU 信息:
python -c "import torch; print(torch.cuda.get_device_name(0))"
以下是关于CUDA工具包、显卡驱动和PyTorch之间关系的清晰总结:
conda虚拟环境
1.创建虚拟环境
conda create --name xxx python=3.11.7
2.激活环境
conda activate xxx
3.退出环境
conda deactivate
4.删除环境
首先要退出当前环境 或 在base环境下执行。
conda env remove --name xxx
5.列出所有环境
conda env list
5.查看虚拟环境大小(Ubuntu)
5.1.Ubuntu下查看虚拟环境大小
du -sh /home/damon/anaconda3 # base环境大小
du -sh /home/damon/anaconda3/envs/* # 虚拟环境大小
damon@damon-System-Product-Name:~$ du -sh /home/damon/anaconda3/
43G /home/damon/anaconda3/
damon@damon-System-Product-Name:~$ du -sh /home/damon/anaconda3/envs/xxx/
9.8G /home/damon/anaconda3/envs/xxx/
damon@damon-System-Product-Name:~$
5.2.wins下查看虚拟环境大小
安装 PyTorch 框架及其核心组件
pytorch官网 : pytorch previous-versions
安装PyTorch 2.4.1,cuDNN
1.安装 PyTorch 2.4.1(含 GPU 加速支持)及其配套工具库(TorchVision 和 TorchAudio),基于 CUDA 12.1 驱动环境。
同时,通过 Conda 自动