文章目录
KAIST 复杂城市数据集
数据集下载:Complex Urban Dataset 复杂城市数据集
KAIST数据集转换为rosbag
1.将 .gz.tar 文件解压到其文件夹中
find . -name 'urban28*.tar.gz' -execdir tar -xzvf '{}' \;
使用这行命令速度较慢,可以一个一个解压
tar -tzvf xx名.tar.gz
2.克隆并构建此存储库
mkdir -p kaist2bag_ws/src
cd kaist2bag_ws/src
git clone git@github.com:RPM-Robotics-Lab/irp_sen_msg.git
git clone git@github.com:tsyxyz/kaist2bag.git
cd ..
catkin build
3.使用路径和所需主题编辑配置文件
在 kaist2bag/config/config.yaml 下
只需修改 dataset 和 save_to 即可。
# dataset: "/home/tao/sda/dataset/kaist/urban30/urban30-gangnam"
dataset: "/mnt/hgfs/Shared/datasets/kaist_Urban/urban27/urban27-dongtan"
# save_to: "/home/tao/sda/dataset/kaist/urban30/urban30-gangnam/bag"
save_to: "/mnt/hgfs/Shared/datasets/kaist_Urban/urban27/urban27-dongtan/bag"
# ================ 传感器开关 ================
# altimeter: true # 对应 sensor_data/altimeter.csv
# encoder: true # 对应 sensor_data/encoder.csv
# fog: true # 对应 sensor_data/fog.csv
# gps: true # 对应 sensor_data/gps.csv
# vrs: true # 对应 sensor_data/vrs_gps.csv
# imu: true # 对应 sensor_data/xsens_imu.csv
# velodyne: true # 对应 sensor_data/VLP_left 和 VLP_right
# sick: true # 对应 sensor_data/SICK_back 和 SICK_middle
# stereo: true # 对应 image/stereo_left 和 stereo_right
# ================ Topic ================
# 时间戳文件(自动关联)
# - data_stamp.csv
# - *_stamp.csv
# 高度计
altimeter: true
altimeter_topic: "/altimeter_data"
# 编码器
encoder: true
encoder_irp_topic: "/encoder_count" # 原始脉冲计数
encoder_raw_topic: "/joint_states" # 关节状态
# 光纤陀螺
fog: true
fog_topic: "/dsp1760_data"
# GPS
gps: true
gps_topic: "/gps/fix" # 标准GPS数据
vrs: true
vrs_topic: "/vrs_gps_data" # 虚拟参考站GPS
# IMU
imu: true
imu_irp_topic: "/xsens_imu_data" # 原始二进制数据(需确认格式)
imu_raw_topic: "/imu/data_raw" # ROS标准IMU数据
imu_mag_topic: "/imu/mag" # 磁力计数据
# Velodyne激光雷达
velodyne: true
velodyne_left_topic: "/ns2/velodyne_points" # 左雷达点云
velodyne_right_topic: "/ns1/velodyne_points" # 右雷达点云
# SICK激光雷达
sick: true
sick_back_topic: "/lms511_back/scan" # 后置SICK扫描数据
sick_middle_topic: "/lms511_middle/scan" # 中置SICK扫描数据
# 双目相机
stereo: true
stereo_left_topic: "/stereo/left/image_raw" # 左目图像
stereo_right_topic: "/stereo/right/image_raw" # 右目图像
4.为每种传感器类型创建一个 rosbag 文件
source devel/setup.bash
roslaunch kaist2bag kaist2bag.launch
5.将所有 bag 合并为一个
rosrun kaist2bag mergebag.py merged.bag /mnt/hgfs/Shared/datasets/kaist_Urban/urban27/urban27-dongtan/bag/*.bag
或
rosrun kaist2bag mergebag.py merged.bag <bag_file_1> ... <bag_file_8>
其中 merged.bag 是保存的路径。
合并后,结果如下:
damon@damon-virtual-machine:~/kaist2bag_ws$ rosbag info merged.bag
path: merged.bag
version: 2.0
duration: 19:20s (1160s)
start: Dec 12 2018 10:44:08.84 (1544582648.84)
end: Dec 12 2018 11:03:29.23 (1544583809.23)
size: 28.6 GB
messages: 2038500
compression: none [24116/24116 chunks]
types: irp_sen_msgs/LaserScanArray [590075c3653e9b2cc1c75018fcbeedde]
irp_sen_msgs/altimeter [e6c99c37e6f9fe98e071d524cc164e65]
irp_sen_msgs/encoder [360abb290fcf41163977621351ecd430]
irp_sen_msgs/fog_3axis [2f13bb2da647a41df38407a7a8adc90a]
irp_sen_msgs/imu [97cd0887761aab329eff97e8b6aab17e]
irp_sen_msgs/vrs [1a83e0593b51691190a14fffd0fc6b2c]
sensor_msgs/Image [060021388200f6f0f447d0fcd9c64743]
sensor_msgs/Imu [6a62c6daae103f4ff57a132d6f95cec2]
sensor_msgs/JointState [3066dcd76a6cfaef579bd0f34173e9fd]
sensor_msgs/MagneticField [2f3b0b43eed0c9501de0fa3ff89a45aa]
sensor_msgs/NavSatFix [2d3a8cd499b9b4a0249fb98fd05cfa48]
sensor_msgs/PointCloud2 [1158d486dd51d683ce2f1be655c3c181]
topics: /altimeter_data 11605 msgs : irp_sen_msgs/altimeter
/dsp1760_data 1160508 msgs : irp_sen_msgs/fog_3axis
/encoder_count 116048 msgs : irp_sen_msgs/encoder
/gps/fix 7017 msgs : sensor_msgs/NavSatFix
/imu/data_raw 116054 msgs : sensor_msgs/Imu
/imu/mag 116054 msgs : sensor_msgs/MagneticField
/joint_states 116047 msgs : sensor_msgs/JointState
/lms511_back/scan 115870 msgs : irp_sen_msgs/LaserScanArray
/lms511_middle/scan 115865 msgs : irp_sen_msgs/LaserScanArray
/ns1/velodyne_points 11506 msgs : sensor_msgs/PointCloud2
/ns2/velodyne_points 11505 msgs : sensor_msgs/PointCloud2
/stereo/left/image_raw 11605 msgs : sensor_msgs/Image
/stereo/right/image_raw 11601 msgs : sensor_msgs/Image
/vrs_gps_data 1161 msgs : irp_sen_msgs/vrs
/xsens_imu_data 116054 msgs : irp_sen_msgs/imu