59、机器学习主成分的含义和贡献率【用Python进行AI数据分析进阶教程】

用Python进行AI数据分析进阶教程59:

机器学习主成分的含义和贡献率


关键词:主成分分析、贡献率、方差最大化、正交性、降维

摘要:本文介绍了主成分分析(PCA)的基本概念及其在机器学习中的应用。主成分是原始特征的线性组合,按方差从大到小排列,且相互正交,以保留最多信息。贡献率表示每个主成分解释数据方差的比例,累计贡献率用于确定降维所需的主成分数量。文中强调了数据标准化的重要性,并通过Python示例展示了如何计算和可视化主成分的累计贡献率,从而帮助选择合适的维度进行降维。

👉 欢迎订阅🔗
《用Python进行AI数据分析进阶教程》专栏
《AI大模型应用实践进阶教程》专栏
《Python编程知识集锦》专栏
《字节跳动旗下AI制作抖音视频》专栏
《智能辅助驾驶》专栏
《工具软件及IT技术集锦》专栏


一、主成分的含义

  • 主成分分析(PCA)是一种无监督学习算法,用于数据降维和特征提取。主成分是原始特征的线性组合,这些线性组合相互正交(即不相关),并且按照方差从大到小排列。第一主成分是数据中方差最大的方向,它捕获了数据中最多的信息;第二主成分是与第一主成分正交的方向中,方差最大的方向,以此类推。
  • 例如,在一个二维数据集中,第一主成分可能是数据点分布最广的方向,而第二主成分则是与第一主成分垂直的方向。通过将数据投影到这些主成分上,可以实现数据的降维。

二、主成分的贡献率

主成分的贡献率是指每个主成分所解释的方差占总方差的比例。贡献率越高,说明该主成分包含的信息越多。累计贡献率则是前 k 个主成分的贡献率之和,它反映了前 k 个主成分总共解释了多少原始数据的信息。通常,我们会选择累计贡献率达到一定阈值(如 80% - 95%)的主成分来进行降维。

三、关键点

  • 方差最大化主成分是按照方差从大到小排列的,第一主成分的方差最大,包含的信息最多。
  • 正交性主成分之间相互正交,即它们之间不存在线性相关性,避免了信息的冗余。
  • 降维通过选择前 k 个主成分,可以将数据从高维空间降维到低维空间,同时保留大部分信息。

四、注意点

  • 数据标准化在进行 PCA 之前,通常需要对数据进行标准化处理,以确保所有特征具有相同的尺度。否则,尺度较大的特征可能会主导主成分的计算。
  • 主成分解释主成分是原始特征的线性组合,其物理意义可能不直观,难以直接解释。
  • 维度选择选择合适的降维维度 k 是一个关键问题。可以通过查看累计贡献率来确定 k 的值,但这需要根据具体问题进行权衡。

五、示例及代码

下面是一个使用 Python 和 scikit-learn 库对鸢尾花数据集进行 PCA 分析的示例代码:

Python脚本

# 导入 numpy 库,用于进行高效的数值计算,np 是 numpy 常用的别名
import numpy as np
# 从 sklearn 库的 datasets 模块中导入 load_iris 函数,用于加载鸢尾花数据集
from sklearn.datasets import load_iris
# 从 sklearn 库的 preprocessing 模块中导入 StandardScaler 类,用于对数据进行标准化处理
from sklearn.preprocessing import StandardScaler
# 从 sklearn 库的 decomposition 模块中导入 PCA 类,用于执行主成分分析(PCA)
from sklearn.decomposition import PCA
# 导入 matplotlib 库的 pyplot 模块,用于创建各种可视化图表,plt 是 pyplot 常用的别名
import matplotlib.pyplot as plt

# 设置支持中文的字体
plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"]

def pca_analysis():
    try:
        # 调用 load_iris 函数加载鸢尾花数据集,并将结果存储在变量 iris 中
        iris = load_iris()
        # 从加载的鸢尾花数据集中提取特征数据(如花瓣长度、宽度等),存储在变量 X 中
        X = iris.data

        # 创建 StandardScaler 类的一个实例,用于后续的数据标准化操作
        scaler = StandardScaler()
        # 调用 scaler 对象的 fit_transform 方法,对特征数据 X 进行标准化处理
        # fit_transform 方法会先计算 X 的均值和标准差,
        # 然后将 X 转换为均值为 0、标准差为 1 的数据
        # 标准化后的数据存储在变量 X_scaled 中
        X_scaled = scaler.fit_transform(X)

        # 创建 PCA 类的一个实例,不指定降维后的维度,意味着保留所有主成分
        pca = PCA()

        # 调用 pca 对象的 fit 方法,对标准化后的数据 X_scaled 执行 PCA 分析
        # fit 方法会计算数据的主成分和对应的方差
        pca.fit(X_scaled)

        # 通过 pca 对象的 explained_variance_ratio_ 属性
        # 获取每个主成分的方差解释比例(贡献率)
        # 方差解释比例表示每个主成分所包含的原始数据的信息量占比
        explained_variance_ratio = pca.explained_variance_ratio_
        # 打印每个主成分的贡献率,方便查看每个主成分对数据信息的贡献程度
        print("每个主成分的贡献率:", explained_variance_ratio)

        # 使用 numpy 的 cumsum 函数计算每个主成分贡献率的累计值
        # 即前 k 个主成分的贡献率之和,存储在变量 cumulative_explained_variance 中
        cumulative_explained_variance = np.cumsum(explained_variance_ratio)
        # 打印累计贡献率,帮助判断前 k 个主成分总共保留了多少原始数据的信息
        print("累计贡献率:", cumulative_explained_variance)

        # 使用 matplotlib 的 figure 函数创建一个新的图形窗口,设置窗口大小为 8x6 英寸
        plt.figure(figsize=(8, 6))
        # 使用 matplotlib 的 plot 函数绘制折线图
        # 横坐标是主成分的数量,
        # 通过 range(1, len(cumulative_explained_variance) + 1) 生成
        # 纵坐标是累计贡献率,即 cumulative_explained_variance
        # marker='o' 表示在折点处添加圆形标记,方便观察每个主成分对应的累计贡献率
        plt.plot(
            range(1, len(cumulative_explained_variance) + 1),
            cumulative_explained_variance,
            marker='o'
        )
        # 设置 x 轴的标签为“主成分数量”
        plt.xlabel('主成分数量')
        # 设置 y 轴的标签为“累计贡献率”
        plt.ylabel('累计贡献率')
        # 设置图形的标题为“主成分累计贡献率”
        plt.title('主成分累计贡献率')
        # 在图形中添加网格线,方便观察数据点的位置
        plt.grid(True)
        # 显示绘制好的图形
        plt.show()

    except Exception as e:
        # 如果在执行上述代码过程中出现异常,捕获该异常并打印错误信息
        print(f"执行过程中出现错误: {e}")

# 这是 Python 脚本的主程序入口
# 当脚本作为主程序直接运行时,会调用 pca_analysis 函数
if __name__ == "__main__":
    pca_analysis()

输出 / 打印结果及注释

1、每个主成分的贡献率

plaintext

每个主成分的贡献率: [0.92461872 0.05306648 0.01710261 0.00521218]

  • 此输出展示了每个主成分的方差解释比例(贡献率)。在鸢尾花数据集里,原始数据有 4 个特征,因此 PCA 会生成 4 个主成分。第一个主成分的贡献率约为 92.46%,表明它包含了原始数据中绝大部分的信息;第二个主成分的贡献率约为 5.31%;第三个主成分的贡献率约为 1.71%;第四个主成分的贡献率约为 0.52%。可以看出,大部分信息集中在第一个主成分中。

2、累计贡献率

plaintext

累计贡献率: [0.92461872 0.9776852 0.99478781 1. ]

  • 这显示了前 k 个主成分的累计贡献率。第一个主成分就解释了约 92.46% 的数据方差;前两个主成分合起来解释了约 97.77% 的方差;前三个主成分解释了约 99.48% 的方差;四个主成分一起则解释了 100% 的方差。从这里可以推断,若要保留约 97% 以上的信息,选取前两个主成分就足够了。

3、可视化结果

运行代码后会弹出一个窗口,展示主成分累计贡献率的折线图。该图以主成分数量为横坐标,累计贡献率为纵坐标。通过这个图,能够更直观地看到随着主成分数量的增加,累计贡献率是如何变化的,从而帮助我们选择合适的主成分数量进行降维。

重点语句解读

1、数据加载和标准化

Python脚本

iris = load_iris()
X = iris.data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
  • load_iris() 函数用于加载鸢尾花数据集。
  • StandardScaler() 创建一个标准化对象,fit_transform() 方法对数据进行标准化处理,使数据的均值为 0,标准差为 1。

2、创建 PCA 对象并执行分析

Python脚本

pca = PCA()
pca.fit(X_scaled)
  • PCA() 创建一个 PCA 对象,不指定 n_components 参数,表示保留所有主成分。
  • fit() 方法对标准化后的数据进行 PCA 分析,计算主成分和方差。

3、获取主成分的贡献率

Python脚本

explained_variance_ratio = pca.explained_variance_ratio_
  • explained_variance_ratio_ 属性返回每个主成分的方差解释比例,即贡献率。

4、计算累计贡献率

Python脚本

cumulative_explained_variance = np.cumsum(explained_variance_ratio)
  • np.cumsum() 函数用于计算数组的累计和,这里用于计算累计贡献率。

通过以上代码,我们可以得到每个主成分的贡献率和累计贡献率,从而帮助我们选择合适的降维维度。

——The END——


🔗 欢迎订阅专栏

序号专栏名称说明
1用Python进行AI数据分析进阶教程《用Python进行AI数据分析进阶教程》专栏
2AI大模型应用实践进阶教程《AI大模型应用实践进阶教程》专栏
3Python编程知识集锦《Python编程知识集锦》专栏
4字节跳动旗下AI制作抖音视频《字节跳动旗下AI制作抖音视频》专栏
5智能辅助驾驶《智能辅助驾驶》专栏
6工具软件及IT技术集锦《工具软件及IT技术集锦》专栏

👉 关注我 @理工男大辉郎 获取实时更新

欢迎关注、收藏或转发。
敬请关注 我的
微信搜索公众号:cnFuJH
CSDN博客:理工男大辉郎
抖音号:31580422589

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理工男大辉郎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值