发布时间:2024年01月
项目主页:https://mobile-aloha.github.io/
在框架中使用:https://github.com/huggingface/lerobot
(*视频中的机器人是遥控操作的,机器人自主技能请见项目网站)
Mobile ALOHA: 你的管家机器人
一、简介 (用低成本全身远程操作学习双手移动操作)
人类示范的模仿学习在机器人技术中表现出令人印象深刻的性能。然而,大多数成果专注于桌面操作,缺乏执行一般实用任务所需的移动性和灵巧性。 在这项工作中,我们开发了一个模仿移动操作任务的系统,这些任务是双手的,并且需要全身控制。 我们首先介绍 Mobile ALOHA,这是一个低成本的全身远程操作系统,用于数据收集。它通过移动基座和全身远程操作界面增强了ALOHA系统。 使用Mobile ALOHA收集的数据,我们然后执行监督行为克隆,并发现与现有的静态ALOHA数据集共同训练可以提高移动操作任务的性能。 通过每项任务50次演示,共同训练可以将成功率提高到90%,使Mobile ALOHA能够自主完成复杂的移动操作任务,
- 例如煎炒并上菜一片虾、
- 打开双门墙橱存放重型烹饪锅具、
- 呼叫并进入电梯、
- 使用厨房水龙头轻轻冲洗使用过的平底锅。
硬件细节
移动ALOHA,系统由有两个手腕摄像头(wrist camera)和一个顶部摄像头,具有机载电池和计算设备
应用
移动机械手相对于地面的垂直高度可达65cm至200cm,可超出底座100cm,可举起重1.5kg的物体,并能以100N的速度施加100N的拉力。高度1.5m。 Mobile ALOHA 能够执行的一些示例任务包括:
- 家务管理:给植物浇水、使用吸尘器(use a vacuum)、装卸洗碗机、从冰箱取饮料、打开门、使用洗衣机、扔和铺被子、塞枕头、拉上拉链和挂夹克、折叠裤子、打开/关闭灯,并自动充电。
- 烹饪:鸡蛋打碎,蒜切末,蔬菜拆包,倒入液体,煎炸鸡腿,将蔬菜焯水,翻炒,盛入盘中。
- 人机交互:与人类打招呼并握手,打开并递给人类啤酒,帮助人类刮胡子和铺床。
二、与静态 ALOHA 数据联合训练
在这项工作中,我们使用协同训练管道,利用现有的静态 ALOHA 数据集来提高移动操作模仿学习的性能,特别是双手动作。静态 ALOHA 数据集总共有 825 个任务演示,包括Ziploc 密封、拿起叉子、糖果包装、撕纸巾、打开带盖的塑料杯、打乒乓球、胶带分配、使用咖啡机、交接铅笔、紧固魔术贴电缆、插入电池以及操作螺丝刀。请注意,静态 ALOHA 数据全部收集在黑色桌面上,并且两条手臂固定为面对面。这种设置与 Mobile ALOHA 不同,MobileALOHA 的背景随着底座的移动而变化,并且两个手臂平行放置,面向前方。我们在协同训练中没有对 RGB 观察或静态 ALOHA 数据的双手动作使用任何特殊的数据处理技术。
双手动作被表述为目标关节位置
表示机器人的基本运动,被表述为目标基线速度和角速度(linear and angular v velocities)
由于静态 ALOHA 数据点没有移动的基本动作(mobile base action),我们对动作标签进行零填充,因此两个数据集的动作具有相同的维度。我们还忽略了静态 ALOHA 数据中的前置摄像头,以便两个数据集都有 3 个摄像头。我们根据统计数据对每个动作进行归一化
在我们的实验中,我们将这种联合训练配方与多种基本模仿学习方法相结合,包括ACT、扩散策略和VINN
三、失败案例
Mobile ALOHA搞笑失败集锦