
keras
imxlw00
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Keras深度学习笔记 softmax 多分类
使用鸢尾花数据集。鸢尾花数据集包含四个特征和一个标签。这四个特征确定了单株鸢尾花的下列植物学特征: 花萼长度 花萼宽度 花瓣长度 花瓣宽度 该表确定了鸢尾花品种,品种必须是下列任意一种: 山鸢尾 Iris-Setosa(0) 杂色鸢尾 Iris-versicolor(1) 维吉尼亚鸢尾 Iris-virginica(2) 目标数据做one-hot编码 import keras from keras import layers import numpy as np import pandas as p原创 2020-11-22 14:26:06 · 858 阅读 · 1 评论 -
Keras深度学习笔记 逻辑回归代码实现
泰坦尼克号生存率预测,什么样的人在泰坦尼克号中更容易存活? 读取数据 import pandas as pd import numpy as np import matplotlib.pyplot as plt import keras # Sequential按顺序构成的模型 from keras.models import Sequential # Dense全连接层 from keras.layers import Dense,Activation train_data = pd.read_csv(原创 2020-11-22 14:12:45 · 882 阅读 · 0 评论 -
Keras深度学习笔记 逻辑回归
简介 逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛 原理 要想掌握逻辑回归,必须掌握两点: 逻辑回归中,其输入值是什么 如何判断逻辑回归的输出 输入 逻辑回归的输入就是一个线性回归的结果。 激活函数 sigmoid函数 我们定义逻辑回归的预测函数为ℎ????( ????) = ????( ????????????) ,其中g(x)函数是sigmoid函数原创 2020-11-22 13:35:52 · 760 阅读 · 0 评论 -
Keras深度学习笔记 非线性回归
生成数据 import keras import numpy as np import matplotlib.pyplot as plt # Sequential按顺序构成的模型 from keras.models import Sequential # Dense全连接层 from keras.layers import Dense,Activation from keras.optimizers import SGD # 使用numpy生成200个随机点 x_data = np.linspace(-0原创 2020-11-21 19:45:34 · 342 阅读 · 0 评论 -
Keras深度学习笔记 实现单变量线性回归
线性回归问题,创建了100个离散点,然后用一条直线去拟合它们。 导入模块 import matplotlib.pyplot as plt import numpy as np from keras.models import Sequential from keras.layers import Dense 创建数据 随机指定100个点,数据范围是 0 到 1,数据本身的分布为 y = 0.1 * x + 0.2,并且我们加入了一些噪声点。 x_data=np.random.rand(100) noi原创 2020-11-21 19:10:56 · 228 阅读 · 0 评论 -
Keras深度学习笔记 线性回归
定义与公式 线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。 特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归。 单变量回归 当只有一个变量时,线性模型的函数定义为: 其中,权值w0为函数在y轴上的截距, w1为解释变量的系数。我们的目标是通过学习得到线性方程的这两个权值,并用它们描述解释变量与目标变量之间的关系。 在只有一个解释变量的特殊情况下,线性回归也称为简单线性回归(sim原创 2020-11-21 18:10:41 · 734 阅读 · 0 评论