- 博客(7)
- 收藏
- 关注
原创 Seruat v5测试第一部分- 聚类
通过Seruat的FindMarkers()或FindAllMarkers()函数,识别每个簇与其他簇相比显著高表达的基因。(barcode),试剂分析中需要质控过滤低质量的细胞(比如空液滴或者双细胞)。每行对应一个基因或其他特征(如抗体标签、CRISPR引导RNA)。1. CellMarker:涵盖人类和小鼠的细胞标记基因。1. 基因表达UMAP图:FeaturePlot()存储基因表达数据(UMI计数矩阵)2. 小提琴图:VlnPlot()3. 热图:DoHeatmap():存储基因(或特征)的。
2025-04-10 18:15:18
373
原创 GitHub使用小记
点击New repository,编写命名和介绍等,就可以复制SSH链接,按照提示运行git remote add origin 和git push -u origin main 就上传完成了。打开github网址上的个人主页,点开相应的仓库(repositories),点开文件选择介绍后面的三个点,点击 delete files,然后点击。结果会在~/.ssh目录下生成两个文件:id_rsa 和 id_rsa.pub。使用git删除对应的文件,再重新上传,如果本地没有文件,先clone。
2025-04-08 17:27:48
336
原创 snakemake小记
通过配置文件,可以将硬编码的参数(如文件路径、参数值)提取出来,便于修改和复用。工作流的特点:1)Snakemake 自动解析依赖关系,无需手动指定任务顺序(自动化)。它基于 Python,通过定义规则(rules)来描述任务及其依赖关系,使复杂的数据分析流程更易管理和自动化。Snakemake 会根据输出文件的需求自动解析规则之间的依赖关系,并按照正确的顺序执行任务。:规则是 Snakemake 的核心概念,用于定义任务(task)。4)结果可重复,规则可复用,可以用来构建复杂的流程。
2025-03-20 18:01:37
965
原创 RANSAC 算法一览
通过选择足够大的 ( N ),RANSAC 算法能够确保在多次随机选择中,至少有一次选择的样本集不包含离群点,从而提高模型拟合的准确性和鲁棒性。这种基于概率的选择方法使得 RANSAC 在处理含有离群点的数据时表现得更加有效。4. 如果内部值数与集中总点数的比例超过预定义的阈值 τ ,则使用所有已识别的内值重新估计模型参数并终止。)选择得足够高,以确保随机样本组中至少一个不包含异常值的概率。表示观察到异常值的概率。3. 计算所有点的集合和模型的容差;表示任何选定数据点为异常值的概率,2. 计算模型参数;
2025-03-04 20:06:19
486
原创 Proksee绘制细菌基因组圈图
支持在线BLAST和prokka以及部分基因注释,并且能将对应的分析结果添加到圈图显示,主要功能如下图左,其中。总的来说操作prokka操作便携,适合小量基因组(如细菌基因组、质粒、线粒体、叶绿体等)的在线分析和展示。图的Mark边栏可以选择背景色和基因组展示方式(环状或者条状),以及是否展示标签等。则表示开始线上分析。分析结果可通过“Add Features to Map。”添加并更换颜色,下图右。表示可以将结果添加进图,
2024-11-25 15:26:50
1855
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人