letcode hot 100 第5题
题目 盛最多水的容器
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
解答
解答思路
一 暴力求解
暴力求解很简单,把每个最大面积也就是盛水量求出来,取最大的就行,但是会超时,所以不行。
二 双指针法
这里采用双指针法,很巧妙的解决了。
首先我们要知道为什么可以使用双指针法。
假如两个指针i,j分别从左右两头开始。
那么此时的盛水量就是water = (j-i) *(hegight[i],hegight[j])
接下来,我们只需要将较短的指针移动即可。
why?
这个是本题的重点。
因为盛水量取决与最短的板,最开始的底(j-i)
是最大的,只有向内移动最短的板,才有可能找到比现在更大的盛水量;
如果移动较长的板,你的底变小,而高不变,因为短板没变,此时,water就不可能比之前大。
所以,就是每次找两个指针所指较短的板,然后向内移动。
至于什么时候结束:那么就是两个指针相交的时候,因为相交就不存在面积,也无法盛水了。
代码
class Solution {
public:
int maxArea(vector<int>& height) {
int res = 0,water = 0;
/* 暴力求解,超时
for(int i=0; i<height.size()-1; i++)
{
for(int j=i+1; j<height.size();j++) {
water = (j-i)*min(height[i],height[j]);
if(water > res)
res = water;
}
}
*/
// 双指针法
int i,j;
i = 0;
j = height.size()-1;
while(i < j) {
if(height[i] < height[j])
res = max(res,(j-i)*min(height[i++],height[j]));
else
res = max(res,(j-i)*min(height[i],height[j--]));
}
return res;
}
};
总结
本题因为要算面积,我们可以不断缩小求解的范围,此时采用双指针法。