以下文章将围绕如何将 Postman 调试脚本一键转化为 Python 爬虫代码,讲解三大关键技巧,并结合爬虫代理示例,实现票务信息采集(目标站点:https://m.piaoxingqiu.com)。全文采用“跨界混搭”型结构:先介绍领域 A(API 调试),再映射领域 B(Python 爬虫),随后给出联动实现的三大技巧,最后探讨其价值与应用场景。
领域 A 介绍:Postman 调试脚本
Postman 提供了可视化的请求构建与调试环境,通过“Code Snippet”按钮可以将任意接口请求一键生成多种语言代码,包括 Python‑Requests 风格。
在 Postman 界面右侧工具栏点击 </>
,选择 “Python – requests” 选项,即可自动复制包含 URL、方法、Headers、Body 及认证信息的 Python 代码骨架。
领域 B 映射:Python 爬虫技术
Python 爬虫常用 requests
库,它支持会话管理(Session)、Cookie 持久化、定制 Headers(User‑Agent)以及代理设置等高级功能,有效提升爬虫的稳定性与反封锁能力。
- Cookie 管理:
Session
对象可跨请求自动维护 Cookie。 - User‑Agent 伪装:通过
headers={'User‑Agent': ...}
可模拟浏览器请求,规避简单反爬检测。 - 代理集成:
proxies={'http': 'http://user:pass@host:port'}
可将请求路由至代理服务器,实现 IP 隐匿与池化管理。
联动实现:三大技巧
下面以三大技巧为核心,逐步展示如何从 Postman 脚本到完整 Python 爬虫。
技巧一:利用 Postman 代码生成快速搭建请求骨架
- 在 Postman 中配置好接口(GET/POST、URL、Headers、Params、Body 等)。
- 点击右侧
</>
,选择 “Python – requests”,复制生成的代码,形成以下初始骨架:
import requests
url = "https://m.piaoxingqiu.com/api/tickets"
headers = {
'Accept': 'application/json',
# … Postman 自动带入的其它 headers
}
response = requests.get(url, headers=headers)
print(response.text)
- 该骨架含有 URL、方法及基础 headers,可为后续定制打下基础。
技巧二:Session 管理 + Cookie 与 User‑Agent 伪装
在骨架基础上,使用 Session
对象统一管理 Cookie 与 Header:
import requests
session = requests.Session()
# 设置自定义 User-Agent(模拟浏览器)
session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/112.0.0.0 Safari/537.36'
})
# (可选)预先设置 Cookie
session.cookies.update({'sessionid': 'YOUR_SESSION_ID'})
这样,后续所有 session.get/post
请求均自动带上上述 header 和 cookie。
技巧三:代理 IP 集成——爬虫代理示例
以亿牛云爬虫代理服务为例(假设已开通“域名访问模式”):
- 代理域名:
www.16yun.cn
- 端口:
8080
- 用户名:
user123
- 密码:
pass123
配置方式如下:
# 在 session 中配置 HTTP/HTTPS 代理
session.proxies = {
'http': 'http://user123:pass123@www.16yun.cn:8080',
'https': 'http://user123:pass123@www.16yun.cn:8080'
}
此举可将所有请求通过爬虫代理转发,实现 IP 池化,提升采集能力。
完整示例代码
下面整合上述三大技巧,对目标站点进行票务信息采集(标题、地点、价格、时间):
import requests
from bs4 import BeautifulSoup # 用于解析 HTML
# —— 初始化 Session,并设置 Cookie、UA、代理 ——
session = requests.Session()
session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/112.0.0.0 Safari/537.36'
})
session.cookies.update({'sessionid': 'YOUR_SESSION_ID'})
session.proxies = {
'http': 'http://user123:pass123@www.16yun.cn:8080',
'https': 'http://user123:pass123@www.16yun.cn:8080'
}
# —— 发送请求并解析页面 ——
url = "https://m.piaoxingqiu.com/tickets"
resp = session.get(url)
soup = BeautifulSoup(resp.text, "html.parser") # 解析 HTML:contentReference[oaicite:8]{index=8}
# —— 数据提取示例 ——
tickets = []
for item in soup.select(".ticket-item"):
title = item.select_one(".title").get_text(strip=True)
location = item.select_one(".location").get_text(strip=True)
price = item.select_one(".price").get_text(strip=True)
time = item.select_one(".time").get_text(strip=True)
tickets.append({
'标题': title,
'地点': location,
'价格': price,
'时间': time
})
# —— 输出结果 ——
for t in tickets:
print(t)
价值探讨
- 跨界融合:将 API 测试(Postman)与 Python 爬虫相结合,简化开发流程,降低学习门槛。
- 灵活可扩展:三大技巧通用性强,可替换为其他代理服务、爬虫框架或解析库。
- 抗封锁与高效稳定:
Session
+ 自定义 UA + 代理池组合,大幅提升爬虫稳定性与隐蔽性。 - 团队协作与运维:非 Python 开发者通过 Postman 即可快速定义接口,后端同学可无缝接入生产环境。
通过以上三大技巧,开发者可轻松将 Postman 调试脚本秒变为生产级 Python 爬虫代码,实现高效、稳定、安全的数据采集。