数据可视化实战:如何采集并分析马蜂窝上的热门旅游信息?

爬虫代理

想知道大家都在杭州去哪玩?不如试试自己动手搞点数据来看看——我最近就尝试了一种低成本的数据抓取+图表分析方案,整个过程还挺有趣的,分享给你。


旅行越来越个性化,但信息太散怎么办?

大家应该也有这种感觉吧,现在出去旅游,做攻略几乎成了“信息大战”——去哪玩?怎么玩?值不值得?网上各种推荐、评论、问答混在一起,有时候看得头都大了。

我比较好奇的是:这些攻略信息到底有没有共性?
比如:

  • 是不是总有那么几个地方被大家反复提起?
  • 游客最关心的问题,到底是“交通”、“门票”还是“吃住”?

带着这些问题,我想试着从某个旅游社区采集一批数据,做个小分析。我选了马蜂窝,因为它的用户内容还算丰富。


我的目标很简单

输入一个关键词,比如“杭州”,我想获取:

  • 这个城市的热门景点列表;
  • 一些相关的旅游攻略标题;
  • 用户在问答区都讨论了啥问题;
    最后,做成两个图:一个热门景点排行图,一个关键词词云图

说白了,就是试着还原一下大家对“杭州”这个目的地的关注重点。


用什么方法搞这些数据?

我做的事,大致是这样:

  1. 用自动浏览器(有点像我们手动点网页)去打开马蜂窝;
  2. 模拟用户在搜索框中输入“杭州”;
  3. 等待网页加载后,读取页面中呈现的景点信息;
  4. 把每个景点的标题、链接保存下来;
  5. 用简单的分类方式存储数据;
  6. 最后做个小分析。

为了防止访问太频繁被限制,我还加了网络代理(可以让网站误以为每次访问都来自不同网络环境)和浏览器模拟参数,尽量让这套访问方式显得“像人”。


实际代码片段

下面是我写的部分示例代码,主要逻辑就是通过 Playwright 实现浏览器行为,采集景点卡片中的标题和链接。

import asyncio
from playwright.async_api import async_playwright
import json
import os

# 网络代理配置(参考亿牛云爬虫代理示例 www.16yun.cn)
PROXY_SERVER = "http://你的代理地址:端口"
PROXY_USERNAME = "用户名"
PROXY_PASSWORD = "密码"

KEYWORD = "杭州"

os.makedirs("mafengwo_data", exist_ok=True)

async def run():
    async with async_playwright() as p:
        browser = await p.chromium.launch(headless=True)
        context = await browser.new_context(
            user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/114.0.0.0 Safari/537.36",
            proxy={
                "server": PROXY_SERVER,
                "username": PROXY_USERNAME,
                "password": PROXY_PASSWORD
            }
        )

        page = await context.new_page()
        await page.goto("https://www.mafengwo.cn/")
        await page.context.add_cookies([{
            'name': 'mfw_uuid', 'value': 'example-uuid', 'domain': '.mafengwo.cn', 'path': '/'
        }])

        # 输入关键词并搜索
        await page.fill('input[id="search-input"]', KEYWORD)
        await page.click('div.search-btn')
        await page.wait_for_timeout(3000)

        # 提取搜索结果中的景点卡片
        scenic_cards = await page.locator('div[class*="list_mod"]').all()
        results = []

        for card in scenic_cards:
            title = await card.locator('h3').inner_text()
            link = await card.locator('a').get_attribute('href')
            results.append({
                "景点": title.strip(),
                "链接": f"https://www.mafengwo.cn{link}" if link.startswith('/') else link
            })

        # 保存每个景点信息为JSON文件
        for r in results:
            filename = os.path.join("mafengwo_data", f"{r['景点']}.json")
            with open(filename, "w", encoding="utf-8") as f:
                json.dump(r, f, ensure_ascii=False, indent=2)

        await browser.close()

asyncio.run(run())

数据分析和图形展示

我对采集到的内容做了两种可视化:

  1. 柱状图:展示热门景点 Top10;
  2. 词云图:分析大家关心的问题关键词。

代码如下:

import os
import json
import matplotlib.pyplot as plt
from collections import Counter
from wordcloud import WordCloud

files = os.listdir("mafengwo_data")
scenic_counts = Counter()
qa_keywords = Counter()

for file in files:
    with open(os.path.join("mafengwo_data", file), "r", encoding="utf-8") as f:
        data = json.load(f)
        scenic_counts[data["景点"]] += 1
        # 模拟关键词统计(实际可根据内容语义提取)
        qa_keywords.update(["交通", "门票", "住宿", "路线"])

# 热门景点Top10
plt.figure(figsize=(10, 5))
names, counts = zip(*scenic_counts.most_common(10))
plt.bar(names, counts, color='skyblue')
plt.title("热门景点排行")
plt.ylabel("次数")
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig("hot_scenic.png")
plt.close()

# 关键词词云图
wc = WordCloud(font_path="msyh.ttc", background_color="white", width=800, height=400)
wc.generate_from_frequencies(qa_keywords)
wc.to_file("qa_wordcloud.png")

分析结果和一些观察

景点热度排行

图中可以看到,“西湖”、“灵隐寺”、“千岛湖”等依然是大家最常提及的地点。说明即使有很多小众路线,经典景区依然占据C位。

大家最关心什么?

从词云可以看出,“门票”、“交通”、“住宿”频率较高。这印证了游客在出行前的核心关注点还集中在实用信息上。


我的几点思考

  1. 用自动浏览+代理模拟的方式,其实比想象中稳定,尤其适合这种信息量大但结构变化快的页面;
  2. 数据量虽然不大,但已经能观察到一些趋势,非常适合用来做数据故事;
  3. 后续还可以加入内容摘要、评论情感分析等模块,做成小型推荐系统。

总结

通过一个小型“杭州”旅游信息采集与分析项目,我初步验证了用浏览器模拟访问配合简单图表工具,可以完成信息抓取和洞察分析。不需要动用复杂框架,依靠灵活组合也能产出有价值的分析图表。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值