
Hudi
文章平均质量分 59
不务正业的猿
桃李不言,下自成蹊。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Hudi面试内容整理-与其他类似项目(如 Delta Lake 和 Iceberg)相比,Hudi 有哪些特点?
ApacheHudi、DeltaLake和ApacheIceberg是三大主流开源数据湖表格式,各自针对不同场景优化。Hudi由Uber开发,专注于实时数据处理与增量更新,支持多种写入操作模式(Insert、Upsert、BulkInsert),内置高效索引机制,提供灵活的存储模式(Copy-on-Write和Merge-on-Read),并支持时间旅行与增量查询。原创 2025-05-12 02:00:00 · 224 阅读 · 0 评论 -
Hudi面试内容整理-Hudi 的数据清理和压缩机制如何工作?
Apache Hudi的数据清理(Cleaner)和压缩(Compaction)机制是其核心功能,旨在优化存储管理和提升查询性能。Cleaner通过定期清理旧版本数据文件,防止存储空间无限增长,提供KEEP_LATEST_COMMITS和KEEP_LATEST_FILE_VERSIONS两种清理策略,默认策略适用于支持时间旅行查询的场景。清理操作在满足特定条件时触发,支持同步和异步模式。Compaction在Merge-on-Read(MOR)表中,将增量日志文件与基础数据文件合并,提升查询性能。压缩流程包原创 2025-05-11 00:27:42 · 126 阅读 · 0 评论 -
Hudi面试内容整理-如何在 Spark 中使用 Hudi?
在Apache Spark中集成Apache Hudi,可以通过以下步骤实现数据的写入、更新和查询。首先,需在Spark环境中添加Hudi依赖,可通过--packages参数或将JAR包放入Spark的jars目录。其次,配置Spark以简化启动时的设置,将Hudi相关配置添加到spark-defaults.conf中。使用Spark DataFrame API,可以轻松将数据写入Hudi表,并支持基于主键的更新操作。Hudi还提供快照查询和增量查询功能,便于分析最新或增量数据。原创 2025-05-11 00:26:28 · 177 阅读 · 0 评论 -
Hudi面试内容整理-Hudi 的数据清理和压缩机制如何工作?
Apache Hudi 的数据清理(Cleaner)和压缩(Compaction)机制是其核心功能之一,旨在高效管理存储空间、提升查询性能,并确保数据一致性。hoodie.compact.inline.trigger.strategy: 压缩触发策略,如 NUM_COMMITS、TIME_ELAPSED 等。hoodie.compact.inline.max.delta.commits: 触发压缩的最大提交次数。:根据压缩计划,合并对应的日志文件和基础数据文件,生成新的基础数据文件。原创 2025-05-11 06:00:00 · 38 阅读 · 0 评论 -
Hudi面试内容整理-如何在 Spark 中使用 Hudi?
将编译好的 hudi-spark3.3-bundle_2.12-0.12.0.jar 文件复制到 Spark 的 jars 目录中,以便在启动 Spark 时自动加载。在 Apache Spark 中使用 Apache Hudi,可以通过多种方式实现数据的写入、更新和查询。上述代码将数据写入名为 hudi_table 的 Hudi 表中,存储路径为 file:///tmp/hudi_table。在使用 Spark 操作 Hudi 之前,需要确保 Spark 环境中包含 Hudi 的相关依赖。原创 2025-05-11 06:00:00 · 37 阅读 · 0 评论 -
Hudi面试内容整理-Hudi 的时间旅行功能如何实现?
Hudi 维护一个有序的提交时间线(Timeline),记录了每次数据操作(如写入、更新、删除、压缩等)的元数据。Apache Hudi 的时间旅行(Time Travel)功能允许用户查询数据在特定时间点的历史版本,实现数据的审计、回溯和恢复等需求。通过上述机制,Apache Hudi 实现了高效的时间旅行功能,满足了大数据环境下对数据版本管理和历史查询的需求。在时间旅行查询中,Hudi 会根据指定的时间点,结合基础数据文件和增量日志文件,构建出该时间点的数据快照。:追踪数据的历史变更,满足合规性要求。原创 2025-05-10 06:00:00 · 143 阅读 · 0 评论 -
Hudi面试内容整理-Hudi 如何实现数据的增量更新?
更新操作将变更数据写入增量日志文件,保留基础数据文件。通过上述机制,Apache Hudi 实现了高效的增量更新能力,使得在大数据环境下能够高效地捕捉和处理数据变更,同时保证数据一致性和可追溯性。在执行 upsert 操作时,Hudi 利用索引快速确定记录的位置,避免全表扫描,从而提高写入和更新的效率。这种机制允许用户基于时间戳或提交 ID 查询特定时间点的数据状态,实现数据的时间旅行和增量查询。在 Upsert 操作中,Hudi 首先通过索引判断记录是否存在,若存在则更新,否则插入。原创 2025-05-10 06:00:00 · 148 阅读 · 0 评论 -
Hudi面试内容整理-Hudi 中的 Copy-on-Write 与 Merge-on-Read 有哪些区别?
此外,Hudi 允许用户根据具体需求,在不同的表或分区中选择不同的存储模式,甚至在同一表中混合使用 COW 和 MOR,以实现性能和资源利用的最优平衡。如果您的应用场景需要频繁更新数据,且对数据的实时性要求较高,推荐使用 Merge-on-Read 模式,以获得更快的写入性能和较低的延迟。如果您的应用场景以查询为主,且数据更新频率较低,推荐使用 Copy-on-Write 模式,以获得更好的查询性能。适用于读多写少的场景,如数据分析和报表查询,对实时性要求不那么高,但查询性能要求较高的业务场景。原创 2025-05-09 06:00:00 · 173 阅读 · 0 评论 -
Hudi面试内容整理-Hudi 的主要优势是什么?
综上所述,Apache Hudi 在实时数据处理、事务支持、历史版本管理、存储模式灵活性、索引机制、自动化数据管理、生态系统集成以及开放性方面具有显著优势,是构建高效、可靠、可扩展的数据湖解决方案的有力工具。通过实现完整的 ACID(原子性、一致性、隔离性、持久性)事务模型,Hudi 能够确保数据的一致性和完整性,支持并发写入控制,防止数据冲突,适用于对数据一致性要求较高的场景。Hudi 内置多种索引类型(如布隆过滤器索引、哈希索引等),支持快速定位和更新记录,避免全表扫描,提高写入和查询效率。原创 2025-05-09 06:00:00 · 123 阅读 · 0 评论 -
Hudi面试内容整理-其他关键组件
常见实现包括:布隆过滤器索引(Bloom Index)、全局哈希索引(Globally-Linked Index)、Inline 简易索引;通过以上组件,Hudi 不仅能高效完成大规模数据的增量写入与更新,还能在持续摄取和查询场景中,提供完整的数据治理、性能优化与生态兼容能力。内置转换(Transform)和格式化(Formatter)插件,可在摄取时完成简单清洗、字段映射等。支持同步(inline)或异步(async)触发策略,能按日志文件数量、时间窗口或提交次数自动执行。原创 2025-05-08 08:00:00 · 127 阅读 · 0 评论 -
Hudi面试内容整理-数据存储模式
Apache Hudi 针对不同的业务场景,提供两种核心的存储模式:Copy-on-Write (COW) 与 Merge-on-Read (MOR)。写入/更新时,Hudi 会为每个分区创建新的 Parquet 文件,并将变更后的数据写入新文件,旧文件保留至新文件写入并替换完成后再删除。通过以上组件,Hudi 不仅能高效完成大规模数据的增量写入与更新,还能在持续摄取和查询场景中,提供完整的数据治理、性能优化与生态兼容能力。,即可在 COW 与 MOR 之间做出合适的选择,并通过参数调优获得最佳性能。原创 2025-05-08 07:30:00 · 168 阅读 · 0 评论 -
Hudi面试内容整理-Apache Hudi 的主要功能
通过提供专门的 DataSource API 和工具(如 DeltaStreamer),Hudi 能够轻松整合 Spark、Hive、Presto 等组件,使数据写入和查询流程更加顺畅。总之,Apache Hudi 通过这些功能为数据湖提供了一个高效、灵活且可靠的数据管理解决方案,既能满足实时数据处理的需求,又能保障历史数据的可追溯性。利用内置索引机制(如布隆过滤器、哈希索引),Hudi 可以快速定位需要更新的记录,实现高效的数据更新操作。写入时生成全新数据文件,适合查询性能要求高的场景。原创 2025-05-07 08:00:00 · 541 阅读 · 0 评论 -
Hudi面试内容整理-Hudi 简介
同时,系统也支持配置数据清理策略,删除不再需要的历史版本数据,从而节省存储空间。为了实现高效的更新与查找,Hudi 内部采用了多种索引结构(如布隆过滤器、哈希索引),这些索引帮助系统快速定位需要更新的记录,减少不必要的全表扫描。在构建数据湖时,Hudi 能够兼顾数据的高效写入与高性能查询,同时确保数据的一致性和可管理性,使得整个系统既具备实时性,又有长期的数据治理能力。通过内置的时间旅行功能,Hudi 允许用户查询任意时间点的数据状态,对于金融、物流等需要追溯数据变化的行业尤为重要。原创 2025-05-07 08:00:00 · 262 阅读 · 0 评论 -
Hudi面试内容整理-Hudi 简介
同时,系统也支持配置数据清理策略,删除不再需要的历史版本数据,从而节省存储空间。为了实现高效的更新与查找,Hudi 内部采用了多种索引结构(如布隆过滤器、哈希索引),这些索引帮助系统快速定位需要更新的记录,减少不必要的全表扫描。在构建数据湖时,Hudi 能够兼顾数据的高效写入与高性能查询,同时确保数据的一致性和可管理性,使得整个系统既具备实时性,又有长期的数据治理能力。通过内置的时间旅行功能,Hudi 允许用户查询任意时间点的数据状态,对于金融、物流等需要追溯数据变化的行业尤为重要。原创 2025-05-06 07:30:00 · 112 阅读 · 0 评论