
机器学习
文章平均质量分 84
IT古董
坚持不懈,努力分享!!!
展开
-
人工智能学习路线
人工智能学习的过程是循序渐进的,先打好数学和编程基础,然后逐步深入机器学习和深度学习,最后通过实际项目和工具框架的使用巩固知识。原创 2024-10-30 14:08:07 · 845 阅读 · 0 评论 -
【机器学习】机器学习中用到的高等数学知识
机器学习是一个跨学科领域,涉及多种高等数学知识。掌握这些高等数学知识可以帮助理解机器学习算法的工作原理和实现过程。在实际应用中,建议结合编程实践,如使用 Python 中的 NumPy 和 SciPy 库进行线性代数和数值计算,使用 scikit-learn 进行统计分析和机器学习建模。通过理论与实践相结合,能够更深入地理解机器学习的核心概念和应用。原创 2024-11-07 09:38:28 · 797 阅读 · 0 评论 -
【机器学习】监督学习-决策树-CART(Classification and Regression Tree,分类与回归树)详尽版
CART(分类与回归树)是一种决策树算法,由 Breiman 等人在 1984 年提出。它用于构建分类树(Classification Tree)或回归树(Regression Tree),以解决分类和回归问题。CART 方法的核心思想是通过递归二分(Binary Recursive Partitioning)将数据集划分成两个子集,最终构建一棵树。原创 2025-02-12 10:36:14 · 2177 阅读 · 0 评论 -
【机器学习】数学知识:拉格朗日对偶(Lagrange Duality)
拉格朗日对偶(Lagrange Duality)是优化理论中的一个重要方法,用于将约束优化问题转换为更易求解的对偶问题。它在凸优化、经济学、机器学习(如 SVM)等领域有广泛应用。拉格朗日对偶是一种强大的数学工具,帮助优化问题转换成更容易求解的形式。原创 2025-02-11 10:53:33 · 662 阅读 · 0 评论 -
【环境配置】安装与配置 CUDA 和 cuDNN 环境,支持多种 GPU 加速框架
以下是在 Windows 10 下安装和配置 CUDA 框架的详细步骤,包括安装 CUDA Toolkit、cuDNN 以及配置深度学习框架(如 TensorFlow 和 PyTorch)的示例。原创 2025-02-07 11:11:47 · 1554 阅读 · 0 评论 -
【深度学习】常见模型-Transformer模型
Transformer 是一种深度学习模型,首次由 Vaswani 等人在 2017 年提出(论文《Attention is All You Need》),在自然语言处理(NLP)领域取得了革命性成果。它的核心思想是通过 自注意力机制(Self-Attention Mechanism) 和完全基于注意力的架构来捕捉序列数据中的依赖关系。Transformer 以其强大的表达能力和灵活性,已经成为深度学习领域的重要基石,为 NLP 和其他领域带来了巨大变革。原创 2025-01-27 08:49:15 · 2545 阅读 · 0 评论 -
【深度学习】常见模型-自编码器(Autoencoder, AE)
自编码器是一种无监督学习模型,通常用于数据降维、特征提取、去噪等任务。其核心思想是利用神经网络将输入数据压缩到低维表示(编码),再通过解码器将其还原为原始数据的近似值。自编码器的目标是最小化原始数据与重构数据之间的误差。自编码器在数据分析和生成领域中具有广泛的应用前景,是深度学习的重要工具之一。原创 2025-01-26 09:18:29 · 986 阅读 · 0 评论 -
【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
生成对抗网络(Generative Adversarial Network, GAN)是一种深度学习模型框架,由 Ian Goodfellow 等人在 2014 年提出。GAN 由 生成器(Generator) 和 判别器(Discriminator) 两个对抗网络组成,通过彼此博弈的方式训练,从而生成与真实数据分布极为相似的高质量数据。GAN 在图像生成、文本生成、数据增强等领域中有广泛应用。GAN 的对抗思想极具创新性,为生成任务提供了一种全新的解决方案,是深度学习领域的里程碑技术之一。原创 2025-01-24 10:32:07 · 1265 阅读 · 0 评论 -
【深度学习】常见模型-循环神经网络(Recurrent Neural Network, RNN)
循环神经网络(Recurrent Neural Network, RNN)是一种用于处理序列数据(如时间序列、文本序列等)的神经网络模型。与传统神经网络不同,RNN 的结构具有记忆能力,可以通过隐状态(hidden state)对输入序列的上下文信息进行建模。它在自然语言处理(NLP)、语音识别、时间序列预测等领域中应用广泛。RNN 是深度学习中一类重要的神经网络,尤其在处理时间依赖性或顺序相关的数据方面表现出色。虽然其基本形式存在一些局限,但通过改进版本(如 LSTM 和 GRU)克服了这些问题,为解决复原创 2025-01-23 10:25:51 · 1076 阅读 · 0 评论 -
【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
卷积神经网络(Convolutional Neural Networks, CNN)是一种专门用于处理数据具有网格状拓扑结构(如图像、语音)的深度学习模型。它通过卷积操作从输入数据中提取局部特征,并逐层构建更复杂的特征表示,广泛应用于图像分类、目标检测、语音识别等领域。CNN 是深度学习领域的一项革命性方法,其强大的特征提取能力让其成为许多视觉任务的首选工具。原创 2025-01-22 09:06:15 · 883 阅读 · 0 评论 -
【深度学习】常见模型-多层感知机(MLP,Multilayer Perceptron)
多层感知机(MLP)是一种经典的人工神经网络结构,由输入层、一个或多个隐藏层以及输出层组成。每一层中的神经元与前一层的所有神经元全连接,且各层间的权重是可学习的。MLP 是深度学习的基础模型之一,主要用于处理结构化数据、分类任务和回归任务等。原创 2025-01-21 10:01:15 · 1052 阅读 · 0 评论 -
【深度学习】关键技术-模型训练(Model Training)
模型训练是机器学习和深度学习中调整模型参数以优化性能的过程,通常包括以下步骤:数据准备:加载数据、预处理、分割训练集和测试集。模型定义:选择合适的算法或网络架构。损失函数与优化器:定义训练目标(损失函数)和优化算法。训练过程:通过迭代更新模型参数,使模型在训练集上表现更优。验证与测试:通过验证集或测试集评估模型的性能,避免过拟合。通过上述步骤和代码,您可以完成模型训练并评估其性能,同时对训练过程中的关键问题进行分析和优化。原创 2025-01-20 09:03:19 · 1012 阅读 · 0 评论 -
【深度学习】关键技术-损失函数(Loss Function)
损失函数(Loss Function) 是机器学习和深度学习模型训练过程中的核心概念,用于度量模型的预测输出与真实标签之间的差异。通过最小化损失函数的值,模型可以逐步优化其参数,提高预测性能。选择适合的损失函数是模型性能优化的重要步骤,应结合任务目标和数据特性进行实验调优。原创 2025-01-17 09:25:02 · 736 阅读 · 0 评论 -
【机器学习】鲁棒(健壮)回归-Huber损失(Huber Loss)
Huber损失是一种对异常值(outliers)具有鲁棒性的损失函数,它在处理回归问题时常用,结合了均方误差(MSE)的平滑性和平均绝对误差(MAE)的鲁棒性。Huber损失通过引入一个阈值 来定义,当误差小于 时采用 MSE,当误差大于 时采用 MAE。原创 2025-01-16 15:46:01 · 1515 阅读 · 0 评论 -
【机器学习】鲁棒(健壮)回归-Theil-Sen估计(Theil-Sen Estimator)
Theil-Sen估计是一种用于线性回归的非参数方法,其优点是对离群点具有鲁棒性。它通过计算数据点之间所有可能斜率的中位数来估计回归线的斜率,随后使用这些斜率估算截距。Theil-Sen 估计常用场景包括需要处理离群点或非正态分布误差的数据。原创 2025-01-16 15:38:01 · 848 阅读 · 0 评论 -
【机器学习】鲁棒(健壮)回归-RANSAC(Random Sample Consensus)算法
RANSAC(Random Sample Consensus)是一种用于估计数据中包含异常值时的模型参数的迭代算法,特别适用于数据包含噪声或离群点的情况。原创 2025-01-16 15:27:34 · 753 阅读 · 0 评论 -
【深度学习】关键技术-正则化(Regularization)
正则化(Regularization) 是一种用于防止模型过拟合的技术。它通过在损失函数中添加额外的约束项,限制模型的复杂度,从而提高模型的泛化能力。正则化的参数(如 和 Dropout 比例)需要通过实验和交叉验证来选择。原创 2025-01-16 10:00:17 · 903 阅读 · 0 评论 -
【机器学习】数据拟合-最小二乘法(Least Squares Method)
最小二乘法是一种广泛使用的数据拟合方法,用于在统计学和数学中找到最佳拟合曲线或模型,使得观测数据点与模型预测值之间的误差平方和最小化。原创 2025-01-15 16:09:50 · 1471 阅读 · 0 评论 -
【深度学习】关键技术-优化算法(Optimization Algorithms)详解与代码示例
优化算法是深度学习中的关键组成部分,用于调整神经网络的权重和偏置,以最小化损失函数的值。以下是常见的优化算法及其详细介绍和代码示例。在深度学习和机器学习领域,优化算法是调整模型参数以最小化损失函数的核心技术。原创 2025-01-15 09:42:31 · 2063 阅读 · 0 评论 -
【深度学习】关键技术-激活函数(Activation Functions)
激活函数是神经网络的重要组成部分,它的作用是将神经元的输入信号映射到输出信号,同时引入非线性特性,使神经网络能够处理复杂问题。以下是常见激活函数的种类、公式、图形特点及其应用场景。原创 2025-01-14 09:57:56 · 1426 阅读 · 0 评论 -
【机器学习】主动学习-增加标签的操作方法-样本池采样(Pool-Based Sampling)
Pool-based sampling 是一种主动学习(Active Learning)方法,与流式选择性采样不同,它假设有一个预先定义的未标注样本池,算法从中选择最有价值的样本进行标注,以提升模型的性能。这种方法广泛应用于需要人工标注的场景,例如文本分类、图像识别等。原创 2025-01-13 15:12:06 · 535 阅读 · 0 评论 -
【机器学习】主动学习-增加标签的操作方法-流式选择性采样(Stream-based selective sampling)
Stream-based selective sampling 是一种主动学习方法,在处理大量数据流时特别有用。它允许学习算法动态选择是否对当前数据实例进行标注(通过与 Oracle 交互)。此方法主要应用于流数据场景中,目的是在不标注所有数据的情况下,提升模型性能。原创 2025-01-13 15:05:26 · 727 阅读 · 0 评论 -
【机器学习】主动学习-增加标签的操作方法-成员查询合成(Membership Query Synthesis, MQS)
成员查询合成(Membership Query Synthesis, MQS)是一个主要应用于机器学习、计算学习理论和自然语言处理(NLP)等领域的概念。它描述了一种框架或技术,其中学习系统(如算法)可以主动生成查询,询问某个实例是否属于目标集合或满足某种条件。原创 2025-01-13 15:01:37 · 582 阅读 · 0 评论 -
【机器学习】数学知识:指数函数(exp)
在数学和编程中,exp 表示指数函数,即自然常数 e为底的幂函数。简单来说,exp 是一种广泛应用的数学函数,尤其在科学计算和机器学习领域至关重要。原创 2025-01-13 10:06:24 · 629 阅读 · 0 评论 -
【深度学习】核心概念-数据驱动(Data-Driven)
数据驱动是一种以数据为核心的决策和开发方式,通过对数据的收集、分析和利用,来指导业务、产品设计以及技术实现。数据驱动强调以客观的数据和事实作为决策依据,而非依赖主观判断或经验。数据驱动是一种以数据为核心资源和决策依据的方式,广泛应用于各行各业。从基础设施建设到高级分析方法,再到智能化应用,数据驱动已经成为现代科技与商业发展的关键推动力。然而,成功实施数据驱动需要高质量的数据、强大的技术能力,以及对隐私和伦理的充分重视。原创 2025-01-13 09:27:50 · 2022 阅读 · 0 评论 -
【深度学习】核心概念-特征学习(Feature Learning)
特征学习是机器学习和深度学习的核心概念之一,其目的是通过算法自动从数据中学习有效的特征表示,而不是依赖人工设计特征。特征学习的目标是让模型从原始数据中提取和表示有意义的信息,以便在分类、回归、生成等任务中获得更高的性能。特征学习通过从数据中自动提取有效的特征表示,为机器学习模型的性能提升提供了重要支持。无论是传统的降维技术(如PCA)还是现代的深度学习方法(如CNN、Transformer),特征学习都在推动人工智能技术的发展中发挥了关键作用。在实际应用中,选择合适的特征学习方法是解决任务的关键。原创 2025-01-10 09:02:48 · 1858 阅读 · 0 评论 -
【深度学习】核心概念-深度结构(Deep Architecture)
深度结构(Deep Architecture)是深度学习领域中的一个重要概念,指的是具有多个层次的神经网络架构。在这些架构中,每一层的输出作为下一层的输入,通常用于学习数据的高级抽象表示。随着层数的增加,网络能够逐步提取越来越复杂和抽象的特征。深度结构的优势在于其通过多层处理,可以捕捉到数据中的复杂模式,并且具有较强的表示能力。深度结构通常用于图像处理、语音识别、自然语言处理等任务。深度结构是现代深度学习模型的基石,能够通过多层次的特征抽象,捕捉数据中的复杂关系。不同的深度结构适用于不同类型的任务,如CNN原创 2025-01-09 09:06:47 · 1180 阅读 · 0 评论 -
【深度学习】核心概念-人工神经网络(Artificial Neural Network, ANN)
人工神经网络是一种受生物神经系统启发的机器学习模型,旨在通过连接大量的节点(称为神经元或节点)来模拟人脑的学习方式。它是一种在监督学习和非监督学习中广泛应用的深度学习模型。原创 2025-01-08 09:06:43 · 1393 阅读 · 0 评论 -
【深度学习】深度(Deep Learning)学习基础
深度学习是一种基于人工神经网络的机器学习方法,通过多个层次(深度)的神经网络从数据中自动学习特征和模式。它是人工智能的一个核心领域,尤其在处理复杂数据(如图像、文本、语音等)时表现出色。原创 2025-01-07 08:48:27 · 1523 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-自监督学习-变换预测(Transformation Prediction)
变换预测是一种自监督学习(Self-supervised Learning)方法,通过学习输入数据在不同变换下的映射关系,捕获数据的语义特征。该方法的核心思想是通过设计某种数据变换,使模型预测这些变换的参数或类型,从而逼迫模型学习有意义的特征表示。变换预测是自监督学习的重要分支,通过设计合理的数据变换和预测任务,模型能从无标签数据中学习有用的特征表示。其灵活性和通用性使其成为深度学习特征提取的基础方法之一。原创 2025-01-06 08:52:24 · 1003 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-自监督学习-自回归方法(Autoregressive Methods)
自回归方法(Autoregressive Methods) 是一种生成式模型,通过条件概率建模数据的联合分布。它假设当前数据点依赖于前面部分的序列,利用这种依赖关系逐步生成数据。自回归方法是生成式建模的重要分支,在深度学习中具有广泛的应用。它通过逐点建模条件概率实现对数据分布的精确建模,适用于图像、语音和文本等多种领域。原创 2025-01-03 09:12:12 · 1407 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-自监督学习-生成式方法(Generative Methods)
生成式方法是一类机器学习方法,其目标是对数据的生成过程建模,学习数据的概率分布,并能够生成与原始数据相似的新样本。生成式方法与判别式方法不同,它不仅关心样本的类别,还学习样本的特征分布。生成式方法是一类机器学习方法,其目标是对数据的生成过程建模,学习数据的概率分布,并能够生成与原始数据相似的新样本。生成式方法与判别式方法不同,它不仅关心样本的类别,还学习样本的特征分布。原创 2025-01-02 09:04:41 · 1279 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-自监督学习-对比学习(Contrastive Learning)
对比学习是一种自监督学习方法,其目标是学习数据的表征(representation),使得在表征空间中,相似的样本距离更近,不相似的样本距离更远。通过设计对比损失函数(Contrastive Loss),模型能够有效捕捉数据的语义结构。原创 2024-12-31 14:33:00 · 1720 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-自监督学习(Self-supervised Learning)
自监督学习是一种机器学习方法,介于监督学习和无监督学习之间。它通过数据本身生成标签,创建训练任务,从而学习数据的表征,而不需要人工标注的标签。这种方法在减少标注数据依赖、提高模型通用性等方面具有重要意义。原创 2024-12-31 09:42:53 · 1567 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-半监督学习-Ladder Networks
Ladder Networks 是一种半监督学习模型,通过将无监督学习与监督学习相结合,在标记数据较少的情况下实现高效的学习。它最初由 A. Rasmus 等人在 2015 年提出,特别适合深度学习任务,如图像分类或自然语言处理。原创 2024-12-30 09:56:06 · 1217 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-半监督学习-半监督生成对抗网络(Semi-supervised GANs)
半监督生成对抗网络(Semi-supervised GANs,简称 SGAN)是一种结合生成对抗网络(GAN)和半监督学习的模型,能够在有限标注数据和大量未标注数据的情况下训练分类器。它扩展了传统 GAN 的结构,使得判别器不仅仅用于区分真假样本,还用于对标注样本进行分类。半监督 GAN 的核心在于将判别器扩展为多分类器,充分利用未标注数据和生成样本的对抗训练,提升分类器性能。相比传统的 GAN 和全监督学习方法,SGAN 能在标注数据不足的情况下取得更好的分类效果。原创 2024-12-27 08:50:53 · 1112 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-半监督学习ーSemi-supervised SVM
Semi-supervised SVM (S³VM) 是一种半监督支持向量机方法,旨在结合标注数据和未标注数据训练模型。相比传统的监督学习 SVM,它在优化过程中利用未标注数据的分布信息,使分类边界更符合未标注数据的结构。S³VM 是半监督学习的一种重要方法,特别适用于标注数据稀缺、未标注数据丰富的场景。尽管其优化问题复杂,但通过合适的初始化和优化方法,S³VM 能有效提升分类性能。原创 2024-12-26 10:08:32 · 1285 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-半监督学习(Semi-supervised Learning)
半监督学习是一种介于监督学习和无监督学习之间的机器学习方法。它利用少量的标注数据(有监督数据)和大量的未标注数据(无监督数据)来进行模型训练,从而在标注数据不足的情况下,提升模型的性能。半监督学习通过利用未标注数据的潜在信息,在标注数据有限的场景下显著提高了模型的性能。根据具体任务和数据特点,可以选择不同的半监督方法来优化模型效果。原创 2024-12-25 09:33:10 · 1767 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-强化学习-Actor-Critic 方法
Actor-Critic 是一种结合了策略优化(Policy Gradient)和价值函数近似的强化学习算法。它通过同时训练一个 Actor(策略网络) 和一个 Critic(价值网络) 来改进学习效率和稳定性。Actor-Critic 是强化学习中的一个重要框架,通过组合策略优化与价值函数评估,实现了高效的策略学习。针对实际问题的具体需求,可以进一步结合改进算法来提高性能和适用性。原创 2024-12-24 09:43:31 · 1659 阅读 · 0 评论 -
【机器学习】机器学习的基本分类-强化学习-模型预测控制(MPC:Model Predictive Control)
Model Predictive Control (MPC),即模型预测控制,是一种基于优化的控制算法,广泛应用于工业、自动驾驶、机器人等领域。它通过预测未来系统的行为,并在线解决优化问题来获得控制输入,从而实现对系统的高效控制。原创 2024-12-23 09:58:00 · 1624 阅读 · 0 评论