使用 CatBoost 实现分类特征的 SHAP

避免对分类特征的 SHAP 值进行后处理

img

结合 [[CatBoost]] 和 [[SHAP]] 可以提供强大的洞察力。特别是当你使用分类特征时。CatBoost 处理这些特征的方式使你更容易理解使用 SHAP 的模型。

对于其他建模包,我们需要先使用 One-Hot 编码转换分类特征。问题是每个二进制变量都有自己的 SHAP 值。这使得很难看到原始分类特征的整体贡献。

在 [分类特征的 SHAP](…/分类特征的 SHAP) 中,我们探讨了一种解决方案。它涉及深入研究 SHAP 对象并手动添加各个 SHAP 值。这可能很乏味!作为替代方案,我们可以使用 CatBoost。

CatBoost 是一个梯度提升库。与其他库相比,它的一大优势是它可以处理非数值特征。无需转换分类特征即可使用它们。这意味着 CatBoost 模型的 SHAP 值易于解释。每个分类特征只有一个 SHAP 值。

我们将:

  • 计算并解释 CatBoost 模型的 SHAP 值
  • 应用 SHAP 聚合 ——我们将看到,在理解分类特征的关系时,它们的作用是有限的
  • 为了解决这个限制࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茶桁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值