Frozen Fine-Tuning(冻结微调)的冻结策略

Frozen Fine-Tuning(冻结微调) 是一种通过冻结预训练模型的大部分参数,仅更新少数特定层或模块的微调方法。其核心目标是在保留预训练知识的同时,以较低成本适配新任务。以下是其冻结策略的详细说明,涵盖原理、具体方法、实现步骤及实践建议:


一、冻结策略的核心原理

  1. 保留通用特征:预训练模型(如BERT、GPT)的底层通常学习通用特征(如词法、句法),冻结这些层可避免破坏其泛化能力。
  2. 局部适配:仅解冻与目标任务相关的模块(如顶层、分类头),使其适应特定任务的语义或模式。
  3. 降低计算成本:减少可训练参数,节省显存和训练时间,适合资源受限场景。

二、常见冻结策略及适用场景

1. 冻结底层(Freeze Lower Layers)
  • 原理:预训练模型的底层(如BERT的前几层)捕捉通用特征,高层(顶层)捕捉任务相关语义。
  • 操作
    • 冻结所有Transformer层,仅解冻最后N层。
    • 解冻分类头(分类任务必须更新)。
  • 适用场景
    • 任务与预训练任务相似(如文本分类、情感分析)。
    • 数据量中等(数千样本)。
  • 示例(以BERT为例):
    model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
    
    # 冻结所有层
    for param in model.parameters():
        param.requires_grad = False
    
    # 解冻最后2层和分类头
    for layer in model.bert.encoder.layer[-2:]:
        for param in layer.parameters():
            param.requires_grad = True
    for param in model.classifier.parameters():
        param.requires_grad = True
    
2. 冻结特定模块
  • 原理:选择性地冻结与任务无关的模块(如Embedding层、注意力键/值投影)。
  • 操作
    • 按模块名称匹配参数,针对性冻结。
    • 通常保留注意力查询(Query)和输出层可训练。
  • 适用场景
    • 需要精细控制参数更新(如多模态模型中的文本分支)。
    • 防止Embedding层因小数据过拟合。
  • 示例(冻结Embedding层和注意力Key/Value):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值