点乘 pytorch

这篇博客主要探讨了PyTorch中的点乘操作,包括两个向量如何进行点乘,即对应位置相乘再求和得到一个标量结果,以及逐元素相乘的区别。此外,还提到了在PyTorch中,即使向量维度不同,只要子维度匹配,仍可进行点乘。不过,博主指出,如果不注意维度匹配,可能会导致错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

逐元素相乘和点乘 2024.05.20笔记 需要确认

矩阵乘号是点乘,自动扩展

点乘 pytorch


逐元素相乘和点乘 2024.05.20笔记 需要确认

两个向量点乘是对应位置相乘再求和,结果是一个数字。

逐元素相乘:是对应位置相乘,结果是相同维度向量

矩阵乘号是点乘,自动扩展


import torch

# 创建张量 a 和 b,使用确定的整数序列
a = torch.tensor([[[[[
    1, 1],
    [1, 1]
]]]]).expand(1, 1, 2, 2, 2)

b = torch.tensor([[[[[
    1, 2],
    [3, 4]
]]]]).expand(1, 1, 1, 2, 2)

# 逐元素相乘
result = a * b

# 输出结果
print("a:\n", a)
print("b:\n", b)
print("result:\n", result)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值