目录
torch.stack(), torch.cat()用法详解
检测box合并 torch.cat
import torch
import numpy as np
# 假设 image 是一个 numpy 数组,boxes 是一个包含边界框坐标的列表
# 这里简单模拟一下输入
image = np.random.rand(300, 400, 3) # 模拟一个 300x400 的图像
boxes = [[10, 20, 50, 60], [70, 80, 110, 120]] # 模拟边界框
input_boxes = []
img_height, img_width = image.shape[:2]
for box in boxes:
x1, y1, x2, y2 = box
width_deta = (x2 - x1) * 0.06
height_deta = (y2 - y1) * 0.05
# 计算调整后的 x1 和 y1,确保不小于 0
x1_new = max(0, x1 - width_deta)
y1_new = max(0, y1 - height_deta)
x2_new = min(img_width, x2 + width_deta)
y2_new = m