雅可比与高斯赛德尔方法求解线性代数方程(Julia)

这篇博客介绍了如何使用Julia编程语言来实现线性方程组的求解,重点比较了雅可比迭代法和高斯赛德尔方法。通过构建具体的方程组,展示了两种迭代法的矩阵表示,并提供了求解函数。文中指出雅可比方法在这种情况下能够收敛,而高斯赛德尔方法则不收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用Julia语言写的迭代解法,求解如下方程
在这里插入图片描述
PS:该方法用雅可比方法收敛而高斯赛德尔方法不收敛

using LinearAlgebra
using Statistics

# 构建方程
A = [
    1.0 2 -2
    1 1 1
    2 2 1
]
b = [
    1.0
    3
    5
]

# 雅可比迭代矩阵B和g
D = Diagonal(A)
E = -(UpperTriangular(A)-D)
F = -(LowerTriangular(A)-D)
B = D\(E + F)
g = D\b

# 求解函数
function solve(B,g,mode)
    size = length(g)
    res = zeros(size)
    res_last = ones(size)
    while(abs(mean(res - res_last))>1.0E-5)
        res_last = res
        res = B * res + g
        if mode == 1
            println(res)
        end
    end
    return res
end

# 求解
solve(B,g,1)

# 构建高斯赛德尔方法矩阵并求解
B = (D-E)\F
g = (D-E)\b
solve(B,g,1)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jake484

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值