圆检测技术:
圆检测技术目前用处还是特别的广泛的,锅炉、管道等类似的情况,我们不能切开或者打孔去测试流量,温度等参数。这是我们可以在管道上画一个圆,用摄像机去检测圆中心,进而测试出我们需要的信息。
对于一个圆,就需要用三个参数来确定。使用Hough梯度法的依据是圆心一定出现在圆上的每个点的模向量上,圆上点的模向量的交点就是圆心的所在位置。Hough梯度法的第一步就是找到这些圆心,这样三维的累加平面就转化为二维累加平面。第二步就是根据所有候选中心的边缘非零像素对其的支持程度来确定半径。
从平面坐标到极坐标转换三个参数C(x0 , y0 , r)其中x0 , y0是圆心
假设平面坐标的任意一个圆上的点,转换到极坐标中:C(x0 ,y0 , r)处有最大值,霍夫变换正是利用这个原理实现圆的检测。
现实考量:
因为霍夫圆检测对噪声比较敏感,所以首先要对图
像做中值滤波。
基于效率考虑,Opencv中实现的霍夫变换圆检测
是基于图像梯度的实现,分为两步:
- 检测边缘,发现可能的圆心
- 基于第一步的基础上从候选圆心开始计算最佳半
径大小
HoughCircles 函数参数:
1.image:输入图像 (灰度图)
2.method:指定检测方法. 现在OpenCV中只有霍夫梯度法
3.dp:累加器图像的反比分辨=1即可默认
4.minDist = src_gray.rows/8: 检测到圆心之间的最小距离,这是一个经验值。这个大了,那么多个圆就是被认为一个圆。
5.param_1 = 200: Canny边缘函数的高阈值
6.param_2 = 100: 圆心检测阈值.根据你的图像中的圆大小设置,当这张图片中的圆越小,那么此值就设置应该被设置越小。当设置的越小,那么检测出的圆越多,在检测较大的圆时则会产生很多噪声。所以要根据检测圆的大小变化。
7.min_radius = 0: 能检测到的最小圆半径, 默认为0.
8.max_radius = 0: 能检测到的最大圆半径, 默认为0
代码实现:
import cv2 as cv
import numpy as np
#圆检测
def detect_circles_demo(image):
# 高斯双边模糊,不太好调节,霍夫噪声敏感,所以要先消除噪声
# dst = cv.bilateralFilter(image, 0, 150, 5)
# 使用高斯模糊,修改卷积核ksize也可以检测出来
#dst = cv.GaussianBlur(image, (13, 15), 15)
#均值迁移,EPT边缘保留滤波,霍夫噪声敏感,所以要先消除噪声
dst = cv.pyrMeanShiftFiltering(image, 10, 100)
cimage = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
#cv.HOUGH_GRADIENT 基于梯度
circles = cv.HoughCircles(cimage, cv.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0)
# around对数据四舍五入,为整数
circles = np.uint16(np.around(circles))
for i in circles[0, :]
#画圆
cv.circle(image, (i[0], i[1]), i[2], (0, 0, 255), 2)#2;线宽
#画圆心
cv.circle(image, (i[0], i[1]), 2, (255, 0, 0), 2)
cv.imshow("circles", image)
print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("D:/vcprojects/images/xingxing.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
detect_circles_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()