色彩空间(一)(Color Space)
灰度色彩空间
单通道,取值范围[0,255]
RGB色彩空间(opencv中习惯用BGR)
计算机色彩显示器和彩色电视机显示色彩的原理一样,都是采用R、G、B相加混色的原理,通过发射出三种不同强度的电子束,使屏幕内侧覆盖的红、绿、蓝磷光材料发光而产生色彩。这种色彩的表示方法称为RGB色彩空间表示。
在RGB颜色空间中,任意色光F都可以用R、G、B三色不同分量的相加混合而成:
F=r[R]+r[G]+r[B] F=r[R]+r[G]+r[B]
F=r[R]+r[G]+r[B]
RGB色彩空间还可以用一个三维的立方体来描述。当三基色分量都为0(最弱)时混合为黑色光;当三基色都为k(最大,值由存储空间决定)时混合为白色光。
opencv中R,G,B三通道取值范围均为[0,255]。
HSV/HSL色彩空间
HSV是一种将RGB色彩空间中的点在倒圆锥体中的表示方法。HSV即色相(Hue)、饱和度(Saturation)、明度(Value),又称HSB(B即Brightness)。色相是色彩的基本属性,就是平常说的颜色的名称,如红色、黄色等。饱和度(S)是指色彩的纯度,越高色彩越纯,低则逐渐变灰,取0-100%的数值。明度(V),取0-max(计算机中HSV取值范围和存储的长度有关)。HSV颜色空间可以用一个圆锥空间模型来描述。圆锥的顶点处,V=0,H和S无定义,代表黑色。圆锥的顶面中心处V=max,S=0,H无定义,代表白色。
色彩空间转换
使用cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )函数。
src,dst,code,dcn:原图片,目标图片,转换格式,目标图片通道数。
代码实现:
import cv2 as cv
import numpy as np
def extrace_object_demo():#追踪有颜色的对象
capture = cv.VideoCapture("E:/ji_qi_xue_xi/opencv_kejian/opencv_python_image/vadio.avi")
while(True):
ret, frame = capture.read()
if ret == False:
break;
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
lower_hsv = np.array([37, 43, 46])
upper_hsv = np.array([77, 255, 255])
mask = cv.inRange(hsv, lowerb=lower_hsv, upperb=upper_hsv) #二值图像:色彩空间、rgb低值、rgb高值
dst = cv.bitwise_and(frame, frame, mask=mask)
cv.imshow("video", frame)
cv.imshow("mask", dst)
c = cv.waitKey(40)
if c == 27:
break
def color_space_demo(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
cv.imshow("gray", gray)
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
cv.imshow("hsv", hsv)
yuv = cv.cvtColor(image, cv.COLOR_BGR2YUV)
cv.imshow("yuv", yuv)
Ycrcb = cv.cvtColor(image, cv.COLOR_BGR2YCrCb)
cv.imshow("ycrcb", Ycrcb)
print("--------- Hello Python ---------")
src = cv.imread("E:/ji_qi_xue_xi/opencv_kejian/opencv_python_image/aaa.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
extrace_object_demo()
color_space_demo(src)
"""
b, g, r = cv.split(src) #通道分离
cv.imshow("blue", b)
cv.imshow("green", g)
cv.imshow("red", r)
src = cv.merge([b, g, r]) #通道合并
src[:, :, 0] = 0
cv.imshow("changed image", src)”””
cv.waitKey(0)
cv.destroyAllWindows()
色彩空间(二)(Color Space)
像素运算:
算术运算
逻辑运算
加、减、乘、除
应用它 – 调节亮度
调整对比度
与、或、非
应用-遮罩层控制
代码实现:
import cv2 as cv
import numpy as np
def add_demo(m1, m2):
dst = cv.add(m1, m2)#两个像素相加,超过255就会截断,剩余
cv.imshow("add_demo", dst)
def subtract_demo(m1, m2):
dst = cv.subtract(m1, m2)#负值会截断为0,成为黑色
cv.imshow("subtract_demo", dst)
def divide_demo(m1, m2):
dst = cv.divide(m1, m2)#除
cv.imshow("divide_demo", dst)
def multiply_demo(m1, m2):
dst = cv.multiply(m1, m2)#乘
cv.imshow("multiply_demo", dst)
def logic_demo(m1, m2):#逻辑运算
#dst = cv.bitwise_and(m1, m2) #与 后面图片的像素在前面
#dst = cv.bitwise_or(m1, m2) #或 前面图片的像素在前面
image = cv.imread("D:/vcprojects/images/demo.png")#非:取反
cv.imshow("image1", image)
dst = cv.bitwise_not(image)
cv.imshow("logic_demo", dst)
def contrast_brightness_demo(image, c, b): #c:对比度(把像素之间的差异扩大化) b:亮度
h, w, ch = image.shape
blank = np.zeros([h, w, ch], image.dtype) #构建空白图像(和h, w, ch 形状像相同)
dst = cv.addWeighted(image, c, blank, 1-c, b)
cv.imshow("con-bri-demo", dst)
def others(m1, m2):
#m1 = cv.mean(m1) 求图片像素均值
M1, dev1 = cv.meanStdDev(m1) #返回均值和标准方差
M2, dev2 = cv.meanStdDev(m2)
h, w = m1.shape[:2] #获取宽 高
print(M1)
print(M2)
print(dev1)
print(dev2)
img = np.zeros([h, w], np.uint8) #生成两个通道的矩阵
m, dev = cv.meanStdDev(img)
print(m)
print(dev)
print("--------- Hello Python ---------")
src1 = cv.imread("D:/vcprojects/images/LinuxLogo.jpg")
src2 = cv.imread("D:/vcprojects/images/WindowsLogo.jpg")
print(src1.shape)
print(src2.shape)
cv.namedWindow("image1", cv.WINDOW_AUTOSIZE)
cv.imshow("image1", src1)
cv.imshow("image2", src2)
src = cv.imread("D:/vcprojects/images/lena.png")
cv.imshow("image2", src)
contrast_brightness_demo(src, 1.5, 0)
#add_demo(src1, src2)
#subtract_demo(src1, src2)
#divide_demo(src1, src2)
#others(src1, src2)
#logic_demo(src1, src2)
cv.waitKey(0)
cv.destroyAllWindows()