
numpy
YL_python_C++_java
不定期更新 自动驾驶、辅助驾驶、遥感相关、深度学习相关、python相关、C语言、C++、java相关。
展开
-
np.random.normal()详解
import numpy as npnp.random.normal()的意思是一个正态分布normal------>正态例子:noise = np.random.normal(loc=0,scale=0.02,size=shape)意义如下:参数loc(float):正态分布的均值,对应着这个分布的中心。loc=0说明这一个以Y轴为对称轴的正态分布,参数scale(float):正态分布的标准差,对应分布的宽度,scale越大,正态分布的曲线越矮胖,scale越小,曲线越高瘦。.原创 2021-06-27 09:12:56 · 11284 阅读 · 0 评论 -
numpy中np.clip()用法
np.clip()裁剪(限制)数组中的值。给定一个间隔,该间隔之外的值将被裁剪到间隔边缘。 例如,如果指定间隔[0,1],则小于0的值将变为0,而大于1的值将变为1。即整个数组的值限制在指定值a_min,与a_max之间,对比a_min小的和比a_max大的值就重置为a_min,和a_max。import numpy as npx=np.array([1,2,3,5,6,7,8,9])np.clip(x,3,8)输出:array([3, 3, 3, 5, 6, 7, 8, 8])..原创 2020-09-21 14:53:16 · 1437 阅读 · 0 评论 -
np.pad()函数解析
np.pad()函数方法参数:pad(array, pad_width, mode, **kwargs)方法返回:填充后的数组参数解释:array:表示需要填充的数组;pad_width:表示每个轴(axis)边缘需要填充的数值数目。参数输入方式为:((before_1, after_1), … (before_N, after_N)),其中(before_1, after_1)表示第1轴两边缘分别填充before_1个和after_1个数值。mode:表示填充的方式(取值:str...原创 2020-09-05 16:50:08 · 1010 阅读 · 0 评论 -
np.linalg.norm()(numpy求范数)
1、linalg=linear(线性)+algebra(代数),norm则表示范数。2、函数参数x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False)①x: 表示矩阵(也可以是一维)②ord:范数类型向量的范数:矩阵的范数:ord=1:列和的最大值ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根(matlab在线版,计算ans=ATA,[x,y]=eig(ans),sqrt(y),x是特征向量,y原创 2020-08-29 16:49:10 · 509 阅读 · 0 评论 -
np.nansum()、np.nanmean() 函数用法
numpy中np.nansum()、np.nanmean()NaN是什么?:Not a Number(NaN),代表一个“不是数字”的值,这个值不能直接进行运算,但它却是一个Number类型!在一个numpy数组求和、均值时,如果这个数组里包含了nan,则程序会报错或者求出来的值是nan,如下代码所示:>>> arr = np.array([1, 2, 3, 4, np.nan])>>> arr.sum()nan>>> arr.mean()原创 2020-08-28 20:35:12 · 24989 阅读 · 0 评论 -
np.random.rand()函数和np.random.randn()函数
np.random.rand()函数语法:np.random.rand(d0,d1,d2……dn) 注:使用方法与np.random.randn()函数相同作用:通过本函数可以返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1。应用:在深度学习的Dropout正则化方法中,可以用于生成dropout随机向量(dl),例如(keep_prob表示保留神经元的比例):dl = np.random.rand(al.shape[0],al.shape[1]) &原创 2020-08-28 16:45:08 · 1718 阅读 · 0 评论 -
Numpy:numpy的运算函数 np.exp()、np.sqrt(B)
Numpy:numpy的运算函数 np.exp()、np.sqrt(B)np.exp(B) : 求e的幂次方np.sqrt(B):求B的开方原创 2020-08-27 14:21:28 · 4824 阅读 · 0 评论 -
NumPy中 axis = 0 ,axis = 1
在numpy中当 axis = 0 ,将会以列作为查找单元,进行列的相关计算print(np.min(a,axis=0))当 axis = 1 ,将会以行作为查找单元,进行行的相关计算print(np.sum(a,axis=1))原创 2020-08-27 08:53:03 · 184 阅读 · 0 评论 -
NumPy教程(Numpy基本操作、Numpy数据处理)
Numpy 属性介绍几种 numpy 的属性:• ndim:维度• shape:行数和列数• size:元素个数使用numpy首先要导入模块import numpy as np #为了方便使用numpy 采用np简写列表转化为矩阵: python array = np.array([[1,2,3],[2,3,4]]) #列表转化为矩阵 print(array) """ array([[1, 2, 3], [2, 3, 4]]) """numpy 的几种属性接着我们看看这原创 2020-08-26 14:13:58 · 3989 阅读 · 0 评论 -
numpy.core.multiarray failed to import 的解决方法
在 import cv2 as cv(opencv)import numpy as npimport tensorflowimport keras 时出现这个问题根本原因是numpy版本低解决方法1、先pip uninstall numpy,确保完全卸载numpy,再pip install -U numpy 或者 在卸载numpy后,删掉 anaconda3\lib\site-packages\numpy\core\multiarray.cp36-win_amd64.pyd 文件,再原创 2020-08-10 12:28:33 · 1670 阅读 · 0 评论