KV Cache 技术分析

原文:Notion – The all-in-one workspace for your notes, tasks, wikis, and databases.

1 什么是KV Cache

LLM(大型语言模型)中的 Attention 机制中的 KV Cache(键值缓存)主要作用是存储键值对,以避免在每次生成 token 时重新计算键值向量,从而减少计算量和提高效率。利用预先计算好的 K 值和 V 值,可以节省大量计算时间,尽管这会占用一定的存储空间。

随着模型规模的增大和数据量的增加,LLM 的窗口长度也在不断增大,因此就出现一组主要矛盾,即:对不断增长的 LLM 的窗口长度的需要与有限的 GPU 显存之间的矛盾。为了解决这个问题,需要优化 KV Cache,减少重复计算,以提高推理性能。

2 使用KV Cache

在推理的时候transformer本质上只需要计算出$O_i$,即一个字一个字地蹦。再根据上面的结论,

  1. Attention的第i个输出只和第 i 个query有关,和其他query无关,所以query完全没有必要缓存,
### 解决加载模型时分配缓存缓冲区失败的问题 当遇到 `Failed to load model: failed to allocate buffer for kv cache` 错误时,这通常意味着系统无法为键值缓存(kv cache)分配足够的内存。此问题可能由多种因素引起,包括但不限于可用物理内存不足、配置参数不合理或其他资源竞争。 #### 可能的原因分析 1. **内存不足** 如果系统的总内存不足以满足当前操作的需求,则可能会发生这种情况。可以检查服务器上的其他进程是否占用了大量内存[^1]。 2. **缓存大小设置不当** 缓存的大小可能是静态设定的或者是基于某些预估的工作负载而定。如果这些估计不准确,可能导致实际运行过程中所需的空间超出预期。对于 block cache 的命中率而言,合理的调整其容量有助于提高性能并减少此类错误的发生概率。 3. **Bloom Filter 配置影响** Bloom filter 是一种用于快速判断某个元素是否存在集合中的数据结构,在存储引擎中常被用来加速查询过程。由于 bloom filters 的元数据会被自动加载到内存中,并占用一定的空间,因此也需要考虑这部分开销是否会间接导致整体可用内存下降从而引发上述异常情况[^2]。 #### 推荐解决方案 为了有效处理这个问题,建议采取以下几个措施: - **优化现有资源配置** 审查现有的硬件条件以及软件层面的各项参数配置,确保有足够的剩余 RAM 来支持应用程序正常运作;必要时增加机器规格或迁移至更高配置的服务实例。 - **动态调整缓存策略** 根据应用的实际访问模式灵活调节各类缓存机制(如 Block Cache 和 MetaData Cache),特别是那些对内存消耗较大的组件。可以通过监控工具获取实时统计数据来辅助决策。 - **启用压缩技术** 对于大尺寸的数据集来说,适当引入压缩算法可以在不影响读写效率的前提下显著降低所需的磁盘 I/O 带宽及相应的内存占用量。 ```bash # 使用 jmap 工具查看 Java 进程堆栈信息 jmap -heap <pid> # 查看 Linux 系统下的内存使用状况 free -m ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值